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ABSTRACT

Lectures on Relativity Theory

These lectures were given to graduate and undergraduate

engineering and science students during the spring semester, 1966. The

lectures cover both the special and general theories. The coverage

of the special theory is fairly complete while that of the general

theory is somewhatabbreviated due to lack of time. The lectures

on the general theory stopped with the derivation of the Schwartzschild

solution and a discussion of the linear theory.
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Relativity Theory

Chapter I

Newton's Theories

A. Newtonian Mechanics:

Postulates or assumptions

i) In inertial frames particles which are not acted on by

forces remain at rest or continue in uniform motion. (This helps

define an inertial frame.)

2) In inertial frames when particles are acted upon by

applied forces, F_ = [Fx, Fy, Fz] = [F I, F2, F3}, the particle moves in

accordance with

d_ = F_.
dt

Here P_(t) is the linear momentumof the particle and t is the time.

For speeds slow with respect to the speed of light in vacuum, it is an

empirical fact that
dx _ .ot

_ OC -- = X

dt
| v/c << i ,

F_ _ F_(x,x, t )
J

where c 2.99776 X i0 I0 -i= cm sec is the speed of light in vacuum.

x(t) = [x I, x ' x32 ] is the position of the particle. The proportion-

ality constant is called the inertial mass of the particle m.

(i.i)

ential equations for the position of the particle.

Hence, we can write

dx---_ (v/c << i). (1o2)t_ = mdt

Newton's second law is now in its popular form

d2x_ P_ " t) (v/c << I) (io3)m- = (x,x,
dt 2

These are a set of three second-order, ordinary, quasi-linear, differ-



3) To every force there is an opposite and equal force.

(action _ reaction) Forces occur in pairs, that is, there is no such

thing as a single force. To avoid confusion we point out that the

action force and the reaction force always act on different particles

i.eo (different bodies).

4) Forces obey the principle of linear sun,nation. If two

FI_, F2_ act on a particle, then they may be replaced by aforces

single force F_ = FI_ + F2_, that is, forces are vectors.

(Page 88._ Resnick Halliday for a popular critique of Newton's laws).

B. Galilean , Transformations and Principle of Relativity.

Newtonian mechanics is formulated in an inertial frame,

however, the precise definition of an inertial frame is not given.

At present we assumethat such reference frames exist and discuss

their properties. The main features of inertial frames are:

i) Distances are determined by using Euclidean three dimen-

s ional geometry°

2) Time is measuredby comparison with clocks reading a

universal time in terms of which "free" particles remain at rest or

continue to movewith uniform velocity.

The transformations which leave Newton's laws invariant must be distance

preserving transformations of .... I:____ +_ _n_inn_l space.

@
The Galilean group is a i0 parameter Lie group; for details

of group structure (infinitesimal generators and structure constants)

see the book Group Theory by M Harm_ermesh.



These are the Galilean transformations, g, defined by,

'_ x_ - v_t + cx = R_8

g: c = constant

t' = t + b _, 8, _, etc. = i, 2, 3. (1,4)

Distance preserving implies

'_ ' '2
ds 2 = dx_ dx = dx dx = ds (1o5)

This condition restricts R@
8

dE ' = R_ _ dx8
dx _ _R@ dx

R8 R _ = 68 <------>R_sR_ = 68_
_V y

R(row)
_'(col) is an orthogonal matrix).

The Galilean principle of relativity is just the statement that Newton's

l_ws i), 2), 3), and 4) are valid in all inertial frames. One says

that Newton's laws are covariant (form invariant) under Galilean trans-

formations° In two inertial frames S(x),S'(x') we have

d2x _
S(x) : m-- =F _

dt 2
Covariance (1o6)

d2x ,_
S'(x') : m-- = F 'Of

dt ,2

F '_ = R_F 8 d2x '_ d2x_
dt 12 R_8 dt 2

C. Newtonian Gravitational Theory:

Postulates or assumptions

i) A particle with active gravitational mass Aa sets up in

its vicinity a gravitational potential _a'



a force

a_) = -Aa ix I = (x')2+(x2)2+(x3)2

2) Another particle brought into the vicinity experiences

Fba = _ V@a

4

(1.7)

The constant of proportionality Pb is called the passive gravitational

mass o

_ba = - Pb V_a =

-PbAa
(1.8)

The three masses introduced can be shown to be proportional if one

assumes (principle of equivalence) I) the motion of a particle in a

gravitational field depends only on its initial position and velocity

and is independent of the type of "material" the particle is constructed

from, 2) Newton's laws of mechanics. We have

d2x

mb dt 2 - PbV_a

mb

p_ constant for all particles => can choose units such that

mb = Pb" If we now interchange the particles, then by Newton's third

law of motion_

Fba = _ Fab,

-mbAa x +maA b x

Fba : ix 13 ' Fab : ix 13 "'"

mb ma

A_ = A-_ = constant (for all particles).
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Hence, we can choose

A=km

and Newton's law of gravitation becomes

-k mamb

Fba = ix 13 x .

-I 3 -2k = 6.670 X 10-8 gm cm sec Newton's law of gravitation (1.9) is

an empirical law. What is the range of validity of (1.9)? The poten-

tial at a distance I_I from a massm is

(1.9)

-kin
(1.10)

Of course the same result is true for a spherically symmetric uniform

mass distribution of radius R as long as I_I > R. For such a body a

characteristic dimensionless number is

km

Rc 2
(i.11)

We shall find later that (i.i0) is only an approximate expression and

is "modified" in the following way in Einstein's gravitational theory,

(1.12)

The corrections will become important when

f km _ 2

(Correction) _ --clxI J km

(Newtonian) km c21xl

Thus, we may take the number km as a measure of the deviation from

Rc 2

Newtonian gravitational theory. Another way to say this is that we

may use (i.i0) when



°

km
6=_ <<i

c2R
(1.13)

where R is a characteristic size. Examples:

Table I

Body
km

8 : --

c2R

earth -,_ 7 × I0 -I0

sun
-6

-_2X i0

moon
-ii

_3× i0

neutron N 10-39 (RN Ifm = I0"13 cm)

electron
2

e =
km. -- km---_2 10-42 (R _----_ 3 × I0 13cm)

_ _ .
c2e2/mc 2 e m c

e

Thus, it is not in the atomic or subatomic world where we must look

for deviations from Newtonian gravitational theory. For material of

a given density p

m _ @R 3 and

6 = km k0R 2

c2R c2

Therefore for a given density the size of the body must be large.

Further examples:

Body

Neutron star

6

0.i p _ I0 -_ gm cm ; R_ i0 ° cm

Universe kpT 2 _ 0.i T_ I0 I0 years; p _ 10-28 gm cm -3

Therefore, we expect the deviations from the Newtonian model to play

a more important role in astrophysics and cosmology. Because the elec-

trical force Fe is much larger than gravitational force



(Proton)
F
--$ = km__2 _ 10-36
F 2
e e

when gravity does play a major role in phenomena,the bodies considered

must be very nearly electrically neutral. If one could free the

electrons in i0 tons of water on the earth's surface and a like number

of positions on the moon's surface, the electrical force of attraction

would be the sameas the gravitational attraction. If we are con-

sidering a continuous distribution of matter, then the potential at a

point _ produced by the body is from (i.i0)

-k_ am = -k; P(_') d3x'

If we operate with the Laplacian V 2 on this equation and use

V(x) x - x'l

(where 6_ - x') is the Dirac delta)

we obtain

2
V @(x) = + 4_kp (1.14)

which is called Poisson's equation.

#¢
This is about the amount of water in a cube 7 ft. on

a side.



D. Einstein's Generalizations of Newton's Theories.

In 1905 Einstein generalized equation (1.3) so that it

would hold for arbitrary values of v/c. The theory he constructed

in doing this is called the special theory of relativity• In 1915

Einstein formulated a theory of gravitation which superseded Newton's

theory. In this latter theory, which is known as general relativity,

Einstein generalized his ideas of 1905and discovered an equation

which represented a generalization of Poisson's equation in Newton's

gravitational theory.



Chapter 2

9

A. Einstein's Special Relativity

One can find a hint of where to start this discussion by

taking a look at the title of Einstein's paper of 1905, "On the Electro-

dynamics of Moving Bodies." As we have mentioned before, Newton's laws

are covariant under the Galilean group. This led us to the Galilean or

Newtonian principle of relativity. Whenone considers electrodynamics

on the other hand, one finds that Maxwell's equations are not covariant

under the Galilean group, i.e.

i/c 2 _2_ = 0 (Maxwell's equation)

_t 2

(_ = electric or magnetic field strengths)

(2.1)

under Galilean transformation

'_ _ v_tX = X

t = t

(2.1) becomes

S' V2_ 2v -2 =o
2 ,_ ,_ ,_ , - c '2

c _x _x c _x _t _t
(2.2)

Therefore, by measuring the field _ alone in the new reference frame S',

point of view there is one frame which has a privilege position, namely

v = 0 => Maxwell's equations have their simplest form, namely (2.1) o In

this frame ("ether" frame) the velocity of light was supposed to be c.

(As the velocity of sound is independent of the velocity of the source,

so also it was supposed that the velocity of light was independent of the
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motion of the source in the "ether" frame°) (For this part we shall

pick units such that c = i.)

Some possibilities open in 1900:

i) There is a principle of relativity for mechanics (Galilean)

but not for electrodynamicso A preferred frame exists for electrodynamics.

2) Maxwell's equations wrong and there exists a principle of

relativity for both mechanics and electrodynamics.

3) Newton's laws (1o3) wrong and a principle of relativity

exists for both mechanics and electrodynamicso

In physics such choices must be made by the experimentalists. Three

types of experiments suggest themselves.

2)

equations o

3)

(io3).

i) Attempt to detect the preferred frame of electrodynamics.

Attempt to find faulty predictions from Maxwell's

Attempt to find faulty predictions from Newton's equation

The first and most famous experiment performed was of the type i). This

was the Michelson-Morley experiment o This made use of an interferometer

(Michelson) on the earth which was used to compare the velocity of light

along and perpendicular to the earth's velocity through the ether.

Let t. = time PM.P = _,. + ------ = be the time for

i i i _i-v i+v / (l_v 2)

the light to travel from the half silvered mirror to M I and back. To

calculate t2 the time for the light to go from P to M 2 and back, we must

consider the light traveling over the extended path PM2P.

The time t2 follows from_22 + _ = _---_ or

2_ 2

t2 = 1/2
(l-v2)
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The optical path difference of light reflected from the two mirrors is

A = t2 - tI = 2 %1
(l_v_)I/2 E(I.v2)I/2 - _2_ "

Rotate instrument by 90 °, then %1 and _2 change places and one has in the

new configuration

2% 1 2% 2
tw = t _ _

I (i_v2)i/2 2 (l.v 2)

The path difference is now

2 %2 2"]
A' = t' I - t'2 -- (l_v2)i/2 E_I (l.v2)i/ .

Thus, when one rotates the apparatus a fringe shift should occur. The

number of fringes is given by

n =_ , or

n _ 2(_i + _2) i i_ ,
X (l.v2) I/2 I (l_v2) i/2

expanding the square root (l-v2) "I/2 = i + 1/2 v2 ... gives

_i+%2 2
n - v

In most cases %1 = %2 and, therefore,

Experimental results

2Observer Year % n = v Measured

Michelson & 1887 ii00 cm .40

Morley

< .005

Joos 1930 2100 cm .75 < .001
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Manymodifications of the Michelson-Morley experiment were devised.

The measurementswere madeat 12-hour intervals at 3- and 6-month inter-

vals with the arms of the interferometer in all positions. The results

are unequivocal there is no fringe shift observed. As an explanation,

Lorentz and Fitzgerald postulated _Ether Theory") that all bodies that

movewith respect to the "ether" are contracted by the amount_ = (l-v2) I/2

(rest), in the direction of motion. Thus, we must modify our calcula-

tions concerning the Michelson-Morley experiment. The necessary

modifications are :

A' --+

2_1 (l-v2) I/2 _2

(l-v 2) (l-v2) I/2

2g I 2% 2 (l-v2) 1/2

(l-v2) I/2 (l-v 2)

A' = A and n = 0.

Thus, the null result of the Michelson-Morley experiment is explained away

by the contraction hypothesis. By another experiment we can also show

that time does not escape unscathed. Imagine in Fig. (2.2) another rod

%'2 identical to _2 moving such that it is at rest with respect to the

ether and parallel to £2 (Fig. 2.3).

We measure the time for the emission of light and its return

as t 2 in the Michelson-Morley experiment,

2g 2

time PM2P = 1/2 = t2 "
(l-v2)

Also, since _' is at rest in the ether
2

= PM2Pto time = 2_' 2
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Since %2= _'2 (because _2 perpendicular to motion) then

t o = (l-v2)I/2t2 (2.4)

If the time actually measuredwere different, this could be used to

measure the velocity of _2 through ether. But we have seen from the

results of the Michelson-Morley experiment that one cannot detect motion

through the ether. An explanation of (2°4) is then that all clocks

moving in the ether are slowed. This meansthat if a clock at rest in

the ether has n ticks, then when it moves through the ether it will

only have (l-v2)i/2n ticks. Thus, although the times in (2.4) are

actually different, they will be measured to be the samebecause the

moving clocks slow down. Thus, in the ether theory the appearance of

length contraction and time dilatation are not demonstrable because all

bodies including the measuring scales and clocks undergo the samephenom-

ena. Besides the length contraction hypothesis of Lorentz-Fitzgerald

manymodifications of Maxwell's equations were attempted. For example,

one of these (emission theory) assumedthat light travels at speed c

with respect to its source instead of through the ether. All these

attempts were shownto be in contradiction with experimental facts.

Hence, in 1905 one had learned from the experimentalists

i) The existence of motion through the ether is not

demonstrable.

2) Any alteration of Maxwell's equations is contradicted by

experiment.

With these conclusions there was only one logical choice:

3) Newton's laws (1o3) were wrong and a principle of rela-

tivity exists for mechanics and electrodynamics.
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Einstein's reaction to the failure to detect the ether was

radical° He proposed the following two postulates as a solution.

Einstein's 1905 postulates of special relativity:

i) Principle of Relativity (Einstein's) - all inertial

frames are equivalent for the formulation of all physical laws. (Co-

variance of all physical laws under transformation of coordinates

between inertial frames.)

2) Light signals (in vacuum) are propagated rectilinearly

with the same constant velocity c, at all times, in all directions, and

in all inertial frames. That is, (2.1) holds in all inertial frames.

Remarks concerning the Einstein postulates:

i° i) is just a generalization of the relativity principle of

Newton to the whole of physics° (Electrodynamics must be covariant under

the transformations from one inertial frame to another, while Newtonian

mechanics (1.3) cannot be.)

2° i) and 2) are not completely independent it was known

that the velocity of light was independent of the motion of the source.

(de Sitter - binary stars) So there exists in one frame (at least) an

effect that is propagated through vacuum at a velocity independent of the

motion of the source. Thus, by the principle of relativity all inertial

observers must find the same result. It is an empirical fact that this

actually is the case. It is quite irrelevant here that this velocity

happens to be equal to the velocity of light in vacuum.

This postulate still suffers in that it picks out the inertial

frames as privileged.
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B. The Lorentz Transformations:

The transformation equations which replace the Galilean trans-

formation equations can be derived immediately from Einstein's postulates

in several ways. Onecould find the set of all transformations which

leaves Maxwell's equations forms invariant. Poincar_ was the first to do

this. Here, however, we take a less sophisticated approach. Webriefly

review the properties of inertial frames:

I) spatial distance determined by Euclidean three dimen-

sional geometry.

2) universal time defined throughout.

3) Newton's laws hold in the form stated in the first chapter.

4) spatially homogeneousand isotropic and temporally homo-

geneouswith respect to all physical phenomena. (This means that space

is the sameat each point and in each direction and that time is the same

at each instant or "a second is a second."

Remark: In practice there are no extended inertial frames. Whether or

not a frame can be treated as inertial depends upon the particular situa-

tiono How do we define the universal time in our inertial frame? This is

arbitrary to a certain extent, but we take the following definition: Two

stationary clocks A and B are said to be synchronized if when a light signal

is dispatched from A, it reaches clock B when B reads t+L (c=l) where L is

the distance between A and B, measured by rods at rest in the frame of the

clocks. To set up an inertial frame we imagine that an origin is chosen

and three dimensional cartesian coordinates are set up in this frame using

a very short measuring rod. Next, at each coordinate point in three dimen-

sional space, identical clocks are placed and synchronized with each other.

i 2 3
Each point at each time is then characterized by an event g(x , x , x , t),
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that is, where and when. When we speak of an "observer" who measures

the path of a given particle, we are speaking of giving the position in

space together with the time as measured by the local clock which is loca-

ted at that point.

One can then imagine space being filled with small "observers"

each one wearing a watch (Fig. 2.4). If the particle comes very near a

particular observer, then he measures t on his watch at that instant and

(x I 2 3records it with his position in the form of an event , x , x , t). The

set of all these observations furnish the path of the particle. It is very

g(x I 2 3important to keep in mind that events , x , x , t) are measured by the

local observer. Later when we speak of "observers" making measurements

it must be borne in mind how the observations are made; if this is not

kept in mind then much of what follows is meaningless. Spatial points in

inertial frames will be denoted by capital Latin letters A, B, C, ...,

while events will be characterized by a symbol g telling where and when

g(x I 2 3 4, x , x , x = t). The universal time as defined above would also

serve as an appropriate time for Newtonian mechanics. On the other hand

because Newtonian mechanics allows arbitrarily large signal velocities,

simultaneity can be defined so that events which are simultaneous in one

inertial frame are simultaneous in all inertial frames. That is, simul-

taneity can be defined in an absolute way. That this is true follows

directly from the Gaiiiean transformation property ot time in Newtonian

theory [t' = t + b equation (1.4)]. In Einstein's special relativity theory,

on the other hand, simultaneity cannot be defined in an absolute way. Two

events gl and g2 are said to be simultaneous in a given inertial frame if

a light signal emitted at the two events meets halfway between them.
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Fig. 2.4
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Consider a flashbulb being set off in a reference frame S' at a

point C. Suppose A and B are at rest and equidistant from C in S' Then

by our definition of simultaneity the i°llumination from the flash will

reach A and B at the same instant in S' Then by our definition of simul-

taneity the illumination from the flash will reach A and B at the same

instant in S' Now suppose S' is moving with respect to another frame S.

To an observer in S the point B is moving away from the origin of the light

flash and A is approaching the origin of the light flash. Therefore in S

t precedes tB (see Fig. 2.5).

simultaneity is relative.

5

Therefore, as defined in special relativity

r

2 1

l Li I-.IT SI I IAI- SEIJT

A c. B

Fig. 2.5

See Fig. 4.5b on a further explanation of simultaneity.

x I 2 x3 4Suppose a flashbulb is set off at ( , x , ) at time t = x

in S, then it illuminates a point a distance dx I, dx 2, dx 3 from the flash

at a time dx 4 from it.

2 3
S: Flash gl(xl,x ,x ,x4); illumination g2(xl+dxl,x2+dx2,x3÷dx3,x4+dx 4)

,i ,3 ,4) , , ,S': Flash gl(X ,x'2,x ,x ; illumination g2(x l+dx l,x'2+dx'2,x'3+dx'3

x '4+dx ,4)
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Since this is an expanding light signal in both frames, it follows from

Einstein's postulates that:

S: (dx4) 2 - (dxl) 2 - (dx2) 2 - (dx3) 2 = 0

S': (dx'4) 2 - (dx'l) 2 - (dx'2) 2 - (dx'3) 2 = 0

1234

Let M('_k) 0 -1+1 3

4

then we can write

dx% dxk = 0
S: _k

S': _k dx'%dxik = 0

Notation: i,j,k,£, ...

M( )= Matrix ( )

= 1,2,3,4.

The Lorentz transformation is given by

x '£ f£= (x) or

dx '_ = f_,kdX k

'k _x k

(transformation of differentials always linear

for coordinate transformations)

Therefore, we have two polynomials

I) I]%kd# dxk = 0

2) _]%k # 'rfk's dxrdxs = 0

which have the same zeroes, this means the polynomials are multiples of one

another, or

q]%kdX'_dx'k = k'_kdX%dx k

By homogeneity and isotropy of space and time, k' cannot depend upon space

or time. By the symmetry of the two inertial frames we can write



_kdX_dxk = k'_kdX'_dx'k

therefore, k '2 = I, but for v = 0 k' = i; therefore k' = 1 always. Thus,

the square of the measure ds2 between two events is an invariant under

coordinate transformations

23

ds2 = l]_k dx_dxk = invariant. (2.5)

,_ f_Onecan show that a transformation x = (x) which transforms the form

dx2 = 11%kdx_dxk with constant coefficients _k into the form ds '2 = ds2 =

I I

%k dx_dxk with constant coefficients _,_k must be linear. When two inertial

frames S, S' are Oriented so that their axis are parallel, their origins coin-

cide at t = t' = 0, and their relative motion is along their common x, x'

axis we shall say they are in standard configuration. The transformation

connecting frames in standard configuration will be called standard Lorentz

transformations. Consider a light pulse: g pulse(x = x' = 0, y = y' = 0,

z = z' = 0, t = t' = 0) and assume the two frames are in standard configura-

tion. Then since coordinate differences transform in the same way as

coordinate differentials under linear transformations, we have

2 2 2 t2 ,)2 ,)2 ,)2 ,)2-x y - z + =-(x - (y - (z + (t (2.6)

as the expression of the invariance of measure (2.5). Note y = 0 ------>y' = 0

y' = Ay, but by the same arguments as used for k' before, A = I. The

same ar_u_Pn_ hnla_ f_ _ _^_

x

_(x)2 + t2 = __J)2 + t '2, (2.7)

= 0 --------->x = vt, where v is the relative velocity of the two frames.

x' = B(x - vt) B, C, D constants

t' = Cx + Dt.



Substituting these expressions into (2.7) and solving for the constants

yields

+ i --v- +
B =D= , C =

(l_v2) I/2 (l_v2) I/2

For transformations which evolve continuously from the identity, we must

choose the signs + - . Therefore, the transformations are

xV = X - vt v

(i_v2)i/2 Y = y

_v t - vx !
E Z = Z

(l_v2) I/2
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(2.8)

One can write this in matrix notation

x' V (v) 0 0 -vy (v) x

x'= y' = 0 I 0 0 y = L(v)
z' 0 01 0 z

t' -vy(v) 0 0 _ (v) t

X (2.9)

where _(v) = (i - v2) I/2. We note that the Newtonian formulas can often be

recovered from the formal limiting process c _ _ To show this in (2.8)

return to the conventional units:

2

x' = x - vt t' = t - v/c x

(i_v2/c2)I/2 ' (i_v2/c2)I/2
(2.8)

In the limit c _ _ these go over into

x' = × - vt t' = t

which are just the Galilean formula. Thus, when there are Newtonian laws

corresponding to laws in special relativity they can be obtained from the

latter by this limiting procedure. It should be remembered, however, that

there are theories in special relativity which have no Newtonian counter-

parts, i.e. Maxwell's theory. We can extend the Lorentz transformations



(2.8) to a more general Lorentz transformation. Writing (2.9)

-il, _2

_ ---L(v)_, _ = _3

and operating on this with a three dimensional rotation matrix R we

have P_' = R L(v) R "I R_.

Let x' = R_' and x = R_. Then

25

(2.9)

-i
x' = R L(v) R x L'(v) = R L(v) R -I

is a Lorentz transformation from x to x' where the x, x

from standard configuration by the rotation R° Example:

' frames differ

r

X

|

|

I

_"_TAI_DAI_.D

COMFIQ UIZ,ATIOk.I _)

_"/.F

Fig. 2.6a

For R(8) =

I

cosO

sinO

0

0

m

-s in@ 0 0

cos8 0 0

0 i 0

0 0 1

the picture is:



X

26

C _.OTA'T_-P

C-.OM F I_ LI I:Z.AI"101_1.'_

Fig. 2.6b

The Lorentz transformation for this case is:

-i
L' = R L(v) R

2
v v v

1   -Y2 ly)o
v v

2
v v v

1 o
v v

-Vy'y

0 0 1 0

- Vx'Y - v ,y 0 %,Y

where v = v cos0, v = v sine.
x y

For the general case one allows R to be the most general three dimen-

sional rotation:

R

----3

C__sOS_ cos_ - cos0sin_sin_, cos_sin_ + cos0cos_sin_, sin_sin0 0 I:Iin_cos_ - cosesin_cos_, -sin_sin_ + cos0cos_cos_, cos_sin0

sin_ s_n_ -sin_ cos_ cos_ v

L 0 0 0 i

R -I = RTranspose

_, _, and 8 are the Euler angles relating the frames _, x ; _', x'

See the book Classical Mechanics, H. Goldstein, page 107.
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After a fairly lengthy calculation one finds

L' = RLR -I =

V V V V V

-_(v-l) (v_t) x___!
v v v2 (v-l) - VxV

2

V_ V V V

(v-l) i+ _(7-i) _2Z(Y-I) - Vy_(

V V

2
VzV x V V V

----f-(,_-l) _--_2-fz2(v-l) l+ --_--(,_-l) - VzV
V V V

- VxY - VyV - Vz_ v

where v = w(v)

v = V(COS_COS_ - cos@sin@sin_)
x

v = - v(sinTcos_ - cos@sin@cosT)
Y

v = v sin@sir_
z

I_ lf%%

_.-u) gives the most general Lorentz transformation without rotations.

We note that the components of v can be obtained from:

V v
x

v =R 0
Y

v 0
z

(2.1o)
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One can write (2.10) in a three vector form

x' = x + i/v 2 (y-l) _.v)v - _ vt (2.10a)

t' = y(t - _.x)

The inverse transformation is obtained from (2.10a) by the substitutions

x <-------> X I V w

x = x' + i/v 2 (y-l)_'.v')v' _ v't

-x .v)t = y(t ' ' (2.10b)

V I ----- V •

S I

Fig. 2.7b
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Standard Configuration

The Lorentz transformations (2.10) are the most general

Lorentz transformations "without rotations" The general inhomogeneous

Lorentz transformation can be written

x '% = LZ x r + a% *
r

where L% are constant transformation coefficients. (2.9) and (2.10)
r

are both examples of particular L_ s. The a s are constants that
r

correspond to a change in origin. We shall usually be concerned with

the homogeneous Lorentz transformations a£ = 0. Proof that standard

configuration is always possible between two arbitrary inertial frames

S, S' A plane fixed in S' has the equation

_ x '_ + P = 0 , _4 = 0 ; P = const.

Transforming this plane into S : = rx '_ L_ x gives
r

_L_kxk + P = 0

(i)

(2)

or

_L_x_ + P + _L%4 t=0

If the transformed plane is at rest in S then

or

_£L_ 4 = 0

(3)

The set of all Lorentz transformations (L,a) is a ten para-

meter Lie group.



Nowa point fixed in S has velocity in S' v '6

,6 dx ,6 L64dx 4 L64

v = dx,4 = L44dx4 = L44 the condition (3)

becomes

_'v' = 0 ,

hence __ is_Lto v'

__ is also perpendicular to the plane in S' Choose two planes in S'

at 90 ° to each other and parallel to v'.

114TO STATIOMAI_.V PI.-ANfES IT I _ _'?_ II_J S.
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(3)

Then these planes must also be at rest in S and they must by symmetry

make 90 ° angles with one another. They must also be parallel to the

original planes in S' by symmetry. (That is, there is no reason for

them to move one way more than another.) We can now construct the

coordinate axis of standard configuration in these fixed planes, taking

the direction -v' as the x,x' axis.
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A. Lorentz Transformations

The transformations between two inertial frames which are in

accord with Einstein's postulates have been shown to be:

x' = y(v)(x - vt), y' = y, z' = z

t' = y(V)(t - xv)
(2.8)

or written in the more general form

x' = x + _vv2(Y- i)(._ • v) v - yvt

t' = y(t - _ • _).

(2.9)

These transformations are called homogeneous Lorentz transformations.

They have some interesting consequences.

i) Length contraction

Fig. 3.1

The bottle is at rest in S' where its length is L
o = x 2' - Xl_ To

measure the bottle's length in S requires two simultaneous markings of

the end points in S: 81(Xl,t), g2(x2,t). The particular way these
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simultaneous markings are madedoes not concern us here; they could be

done by two observers by trial and error°

Using (2.8) we have

x' = V(x - vt)

subtracting gives

! !

x 2 xI = L = yL or
O

L = (i - v2) ½ L (Length contraction) (3.1)
O

(Moving bottles are shortened'.)

As seen from (2.8) there is no contraction perpendicular to the motion.

Thus, the result (3.1) is mathematically the same as the Lorentz-Fitzgerald

contraction hypothesis and of course explains the null results of the

various "experiments" to detect the ether. In general when a body having

a rest volume V moves at velocity v, the volume is contracted to
O

V = (I - v2) ½ V
O

Let us carry out the same contraction calculations using the form (2.10)

for the more general type of transformation "without rotation"

x' = (_ + _vv2(Y - 1)(_ • v)v - yvt).

Let Xl',X2 ! denote the position vectors of fixed points in S'; then

Fig. 3.2
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these points have coordinates Xl, x 2 in S. If a measurement is carried

out to measure the vector x 2 - x I then one has:

v v 1
x 2 x I = AX_o = x2 - Xl + _v 2(Y " I)_2 Xl)V

t2 = tI

Ax = x 2 - x 1

Ax = Ax + _/2(? - l)(_x • v)v
--o v

AXol I = yg_Xll, A_xi : ax i

(II ---->parallel to _i_:> perpendlcular to _)

Inverting Ax one finds
--o

Ax = Ax + _v2(Ax • v)[I/y- l]v-- --o -o - --

Thus, a vector along the x-axis in S' will not point along the x-axis in S.

For two vectors (fixed in S') A_x!', Ax2' such that Ax I' _x2'= 0, it does

not follow that g_ Ax 2 = 0; therefore, the coordinate axis in S' as

viewed from S will not be orthogonal. Although the two frames in Fig. 3.2

are both obtained from standard configuration by the same orthogonal

transformation, their axis are not parallel. Parallelism is not tran-

sitive under Lorentz transformations.

2) Time dilation

5

v

Fig. 3.3
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Let gl be the events of a person in S' starting a Beatle record on a

phonograph. Let g2 signify the end of the record. These events have

coordinates S: gl(Xl,tl) ; g2(x2,t2); S' gl(Xl',tl'), _2(Xl',t2').

The Lorentz transformations of times for the two endpoints are:

t I = _(t I' + v Xl')
!

t2 = y(t 2 + v x2')

and subtracting gives

At = yAt' (time dilation). (3.2)

(Moving clocks run slow.) (Notice that these are the times corresponding

to how long the record played. The details of what the record sounds

like will have to await the discussion of wave phenomenon in relativity.)

It is clear that (3.2) must be true for all repetitive processes, thus it

is true for the life processes in particular. It is to be stressed that

the relativity effects discussed here are not to be thought of as illu-

sionary or merely results of our particular measuring methods. To an

observer the effects are real in every possible sense of the word. One

is often asked to explain why the "rod is shortened" or the "clock runs

slow," it is important to realize that these effects cannot be explained

by some underlying "magic mechanism" they are predicted in a straight

forward manner in relativity theory. Relativity theory offers no expla-

nation in terms of the stru_Lur_ uf matter, =t_-̂., --_-w_+_oo_L_ +_g=__._......_rr,,_,

any theory which is Lorentz covariant must put up with such changes. Also

to avoid the type of misunderstanding that has occasionally arisen, we

point out that there is no absolute observer who can, so to say, "see things

as they really are." As an example of the absurdity of this last statement

consider the path of a bomb dropped from a bomber as seen by i) the
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bombardier 2) a ground based observer. To the bombardier the path is a

verticle straight line, while to the ground observer the path is a

parabola. The details of what one sees depends on the frame of reference,

a fact that is so obvious it is often overlooked. It is instructive to

consider a particular type of clock and understand time dilation in a

particular example. The clock we consider is the so called light clock.

It consists of an electronic flash, a mirror and a photocell as shownin

Fig. 3.4a.

(Ll_H-r C_Ocv..)
M

////1//

II
II
iI
If

L|_I'4T PATH_/ II
{o

I

, i
I I
l I

• I I
I I I

ELECTRD_[IC FLAIRS1F I C I' _PHoTOCF-L_

Fig. 3.4a

Light clock as seen by an observer

at rest with respect to the clock.
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Suppose the clock is at rest in S' , then the time measured for a complete

cycle is T = 2_ . The observer in S sees the light travel in an extended
o o

path because of the clocks motion.

s T/Z//

/
/

/
/

////,
/

/
/

M
//p I/i

\
\

\

o ®
J la OF MOvnMG

Fig. 3.4b

A clock at rest in S' as seen by So

Since the clocks at (I) and (2) in S are synchronized, the time between

clicks is T. The ¢on neetlon between the two is

T2 = v2T 2 + T 2
o

T =7T
o

(3.2)

or the light takes longer to travel the extended path than the up and

down path. The formula for time dilation has been checked experimentally

by the observation of muons at the surface of the earth. The life time
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of a muon is 2_ sec and traveling at the speed of light it could travel

only _ .6km. However, even though the muons are produced at the top of

the atmosphere _ 10km they are actually found at the surface of the earth.

The answer is to be found in (3.2), they live 2_ sec in their rest frame

but this corresponds to _ • 2_ sec; since _ can be quite high the muons

will penetrate to the earth's surface. When the experiments are carried

our seriously the agreement with (3.2) is good.

Comments on time dilation: It will be noticed from the coor-

dinates of the events in the Beatle record experiment, the clock at rest

with respect to the record must really be compared with two clocks in S,

one at x I and one at x 2. These clocks, of course have been synchronized

by the methods discussed earlier. (The "clock" that lags is always the

one which is being compared with different clocks in the other system.)
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an event g.

measure

A. Spacetime - Minkowski Space

Let us imagine the points of spacetime to be plotted on a four

dimensional cartesian set of axis (x,y,z,t). Each point of the space is

Wehave seen that in cartesian coordinates the following

ds2 = _£k dx_ dxk

is invariant in special relativity. The space madeup of the points of

a four dimensional Euclidean space together with the invariant measure

(4.1) is called Minkowski space and is denoted by M4. It is a flat (free

particles move in straight lines) four space with signature --- +. The

region about any event Xo of M4 is divided into three sections. The null

(light) cone of an event x consists of all points connected with x by
o o

light signals. It is the locus of all points

where

o

The three sections are i) absolute future of x ; As 2 _ o, At > o
o

2) relative present of x ; &s 2 <,o and 3) absolute past &s 2 > o At < o.
0 --

These three sections are depicted in Fig. 4.1.

(4.1)

(4.2)

(4.3)
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PA_T

Fig. 4. I

If x
o

= 0, then As -_ s and the measure from o is:

2 2 2
s = - x + t

One can also introduce vectors into spacetime.

(4.4)

Let V% be a four vector in

(This means that V _ transforms in the same way that dx _ doesspacetime.

under Lorentz transformations.) The square of V_ is defined as:

V2 = _%k _vk = - (VI)2 - (V2)2 - (V3)2 + (V4)2" (4.5a)

Since ds 2 is invariant one can show that V 2 is invariant. One can

classify four vectors according to the magnitude of V 2 as shown in Fig. 4.2a:



I) V2 > o => V% is a timelike vector

2) V2 = o _ V% is a lightlike vector

3) V2 < o => V% is a spacelike vector

dx_ t% where X isA curve in M4 is classified by its tangent vector d_ - '

a parameter along the curve. A general curve in M4 will be a mixture

of all three types. For example in Fig. 4.2b along portion A,

40
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X

Fig. 4.2a

Fig. 4.2b
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the curve is timelike, etc. The paths of a material particles when plotted

in spacetime (that is M4) are always timelike curves, and light signals

are always lightlike curves. The dot product of two four A% B% is defined

as
A%Bk

_k = A • B = AB.

Two four vectors are called orthogonal if A • B = O.

a geometric interpretation of Lorentz transformations in spacetime.

methods will be discussed. The first method introduces an imaginary

forth coordinate into the metric

ds2 = _ dx2 _ dy2 _ dz2 _ (idt) 2

ds2 = _ dx2 _ dy2 _ dz2 _ d_2

(4.5b)

Weshall next give

Two

i=J 

,_ = it. (4.6)

(4.6) is formally the same as a Euclidean metric but, of course, its content

is much different because of the imaginary forth coordinate. The Lorentz

transformation (2.8) can now be written as a rotation by an imaginary

angle e in the spacetime described by (4.6).

Lt

Fig. 4.3
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x' = V(x - vt)

t' = y(t - vx)

x' = COS@ X + sin@

-_ _' = -sin@ x + cos@ (4.7)

cosO = y , sinO = ivy.

Introducing a real angle @ = i_ and using the relations

i@ -i@ e%0 + e-% 0
cosO e + e - cosh q0

= 2 - 2

and
i@ -i@

sin@ = e - e
2i

= (e_ - e -r) = isinh q0
2i

the Lorentz transformations can be written in terms of the real quantities

in the form

x' = x cosh _ - t sinh

t' = -x sinh _ + t cosh

(4.8)

and sinh _ = vT(v), cosh _ = 7(v), tanh _ = v. _ is called the rapidity.

In Minkowski space M 4 the transformation (4.8) has a different appearance

than Fig. 4.3.

X TA_I.-I

All

P<O ×

Fig. 4.4
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Equations (4°8) can be written in a convenient form if we add and subtract

them:

x' + t' = e-q°(x + t)

(4.9)
x' - t' = e q0 (x- t).

Using the definitions

+q0 = cosh _ ! sinh _.

Under successive Lorentz transformations associated with coordinate systems

in standard configuration rapidities are additive. Suppose we perform two

standard Lorentz transformations.

_3 = _I + _2

. w X w,

then from (4.9) the resultant transformation is

x" + t" = e-_l - _2 (x + t)

which proves that _3 = _I + _2" This example also shows that the

"product" of two standard Lorentz transformations is another standard

Lorentz transformation, that is, the set of all standard Lorentz trans-

formations forms a group (abelian). Note the velocity of x" with respect

to x is

v 3 = tanh _03 = tanh(q01

tanh ¢Pl + tanh q02

+ q°2) = I + tanh _01 tanh q02

which is the Einstein law for composition of velocities.

v I + v 2

I + VlV 2
(4.10)

B. Geometry of M 4

Can one picture length contraction and time dilation in

Minkowski space? With certain reservations the answer is yes. Construct

2
Fig. 4.5 using the invariant s of equation (4.4).
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t tI

-xz+tz--az---IZ- --_I //

i: ej
I I

Fig. 4.5

x' = x cosh q0 - t sinh _0

t' = -x sinh q0 + t cosh q0

cosh q0 = y

sinh q) = yv.

One sees that the scales on the two axis are not the same from the

Euclidean point of view. This is because

2 2 2 ,2 ,2
-x + t = s = -x + t

which one must use to scale the two sets of axis.

I. Time dilation by diagrams.

Suppose we consider a clock at rest in a frame S' (at the origin)

and compare it with clocks in S.
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_o / /'7 / PATH OF C LOQ(-
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Fig. 4.6a

Time dilation

--X
v

In S we observe the clock at the events gl and g2' in S' the time elapsed

on the clock is the time t ', whereas in S the elapsed time is t. Note
o

that it does not take S any time to read the clock at gl and g2" This of

course is not the case we have just idealized the comparison it would have

to be done in reality by means of signals sent back and forth. Of course,

the arguments can be reversed and a clock at rest in S compared with the

clocks of S' will also run slow. The relativeness of simultaneity shown

in Fig. 2.5 appears as in Fig. 4.6b in Minkowski space.



46
d'-WoI_I.D LI_E OF' A

WO_.LD LII_IE.,c_=

Fig. 4.6b

S imu Itanei ty

2. Length contraction by diagrams

//

Fig. 4.7

Length contraction

Here the rod is assumed to be at rest in S' It's end points are measured

at the events gl and g2 at the same time in S (definition of length

measurement). The rod is seen to be on one meter length in S' but some-

what shorter than this in S.
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BecauseLorentz transformations are linear, straight lines will look like

straight lines in M4 and parallel lines will look like parallel lines.

With these properties we can comparethe measure As2 of parallel lines in

M4. But where metrical properties (distances, angles) are concerned we can

no longer trust our Euclidean intuition.

i

Fig. 4.8

For example, in Fig. 4.8, _ is a "right angle" and the points drawn are

all unit "distance" from the origin 0. In S': A_ = (I,0,0,0), B% =

A%B k
(0,0,0,I) _%k = O.

C. Proper time

The path of a particle in spacetime is a single infinity of

points; a curve characterized by some parameter k defined along the

curve. The equation of the curve F then consists in giving the coordinates

of the line in some coordinate frame (which of course implies the curve is
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known in all coordinate systems)

x =x (k) : F.

If the path is that of a material particle then the curve is at every

point timelike. This means that the measure s can be used as the para-

meter along the curve. Of course, the time t could also be used for the

For the coordinate system in which the particle is atpath parameter.

rest we have

ds2 = dt 2 ; dx_= 0

ds = dT = "proper time"

Hence, ds may be interpreted as the time as measuredby a clock "carried

with particle." In an arbitrary frame

ds2 = d_2 = _ dx2 _ dy2 _dT 2 + dt 2

d_2 = dt2(l - u2)

dt
dt - (I - u2)½ - Y dT

which gives the relationship connecting the time as measuredon the

particle (proper time) to the time as measured in an arbitrary inertial

frame. The arc length

B(r)

T =_ d'r

A(F)

is the total time elapsed as measured by a clock moving with the particle

between the points A(F) and B(F) along the curve F. In general the

integral T depends on the path I_. This gives rise to the clock or "twin"

effect of relativity theory. If two clocks have the same reading at

(4,11)

(4.13)

(4.12)



point A, then if they are separated and have different motions and are

reunited at B they will in general showdifferent times.

49
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Fig. 4.9

The proper time dT is therefore not an exact differential but it depends

upon the path. The coordinate time dt is an exact differential, a fact

which is obvious from the definition of time in an inertial frame.

If we have "twins" at rest in an inertial frame and one remains

at rest while the second leaves and returns, then upon return the second

twin will be younger. That this is true can be seen from spacetime

picture.
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t

tB

:IY
CLOCK _ TWIK/ _'FFF.CT

Fig. 4.10

Since (I - u2) ½ _ I, it is clear that m

is younger.

I > T2 and hence the returning twin
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A. Transformation of Kinematical Variables in Special Relativity

i) Velocity: The velocity of a material particle in two

different frames is given by:

SV:

dx ,, dd__t dzs: u= x+

u' dx' _ _, + dz' ,,,_ = _T _' + dt, _-_7 z ,

where the "hat" ^ signifies a unit vector.

We pick S and S' to be in standard configuration. Using the transforma-

tion formula (2.8) we find the transformation properties of the velocity

to be

- v
- xu' dx' = 7(dx vdt) u

x = _T v(dt vdx) = (i - u v)
x

u U

U! = y Ul = Z

y V(I - u v) z V(I - UxV)x

(5.1)

It is easily seen that the equations (5.1) predict an ultimate speed for

a material particle in an inertial frame. (Usually i + i = 2 but this is

no longer true') Suppose in a given inertial frame S one particle is

traveling at a speed (i - 6) and another particle is traveling in the

opposite direction with a speed -(i - 6). Then what is the velocity u'
x

^_ +_0 1_++ .... _I_]= _.7_eh _pect to the former (Imagine that particle

creation occurs at a certain point.)
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Fig. 5.1

U !

x

u - v
x

1 - U V
x

U !

x

u' =-(1- 6) - (1- 6)
x 2

1 + (i - £)

-2

2 + £2 + £3 + ....

Thus, u ' > - 1 and in the limit 6 _ 0
x

u' --> -i

x E-_O

When one adds velocities according to Einstein's rule i + i = i. In

order for the Lorentz transformations to make sense v < i, that is the

speed of an inertial frame with respect to another inertial frame is

always less than the speed of light in free space. We see from the

example just worked that when we add velocities according to Einstein's

law of addition, a particle can never have a velocity in an inertial frame

greater than that of light in vacuum. To avoid the confusion that some-

times results, we point out that this restriction applies by its derivation

only to the velocity of a particle as measured in an inertial frame. One

can also see directly from the transformation equations that there is an

ultimate speed to any signal transmitted through an inertial frame.
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Fig. 5.2

x Ez(xL,t )

=x

Suppose g l is a "cause" and g2 is an "effect". In S'

At' = _(At vAx) = At _(i - vU). Now if U > i,

then there exists a frame of reference with v < 1 such that i - vU < 0

• At' = t' - t' < 0, therefore we have found a frame in which
2 i

cause and effect are interchanged. Hence, U > I is not possible. By

using the transformations (2.10) for Lorentz transformations without

rotations one can show the velocities are related by:

/
rI_- v(v.__)(1 --i) _ v ]/(i - u.v)u' = u + _

v i

Because the formulas for the transformation of dynamical variables

(5.2)

become fairly complicated (i.e. (5.2) is not easy to remember) we intro-

duce four-vectors. The four-velocity of a particle (also world velocity,

proper velocity) is defined as the unit tangent to the world line of the



particle

= dx____ = dt dx_ i dx _

dr dT dt (I - u2) I/2 dt

Here dr stands for the proper time elapsed during the particle's motion

through dx_. dr is a Lorentz invariant and since dx% is a four-vector

is a four-vector. This means that under Lorentz transformation L:
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(5.3)

x ,_ = L£k xk <==> V ,_ = L_ k Vk (5.4)

In (5.3) u is the magnitude of the velocity of the particle in the

frame where the four-velocity is V_. The first three components of

dx_

are just y(u) times the ordinary velocity _- = u of the particle. The

fourth component V 4 is given by:

V4= i

(I - u2) I/2 = y(u)

We shall use u for the velocity of a particle in a reference frame and

v for the velocity parameter between two Lorentz frames. (usually in

standard configuration) Since the measure ds 2 is a Lorentz invariant

the matrix L% k must satisfy certain conditions;

ds 2
' = _k dx'_dx'k = _£k L_r Lks dxr dxs

(5.5)

= invariant = ds 2 = mr s dx r dx s

Therefore,

L_ Lk = _rsr _£k s (5.6)

One can easily check to see that the standard Lorentz transformations

(2.9) satisfy (5.6). Using (5.6) we can show that the square of the

four-velocity is a Lorentz invariant, namely



V2 _V k V'2 ,£V,k
= _£k = = q]_kV

Thus, if we know V2 in one inertial frame, we know it in all inertial

frames. In the rest frame of the particle: _ = 0, V4 = I, hence
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V2 = ! (5.7)

(5.7) is called the relativity constraint on the four-velocity; it

arises because there are really only three independent componentsof

velocity. In order to check that the transformation law (5.4) contains

the transformation properties of u, we consider the special Lorentz

_(row)
transformation (2.9). In matrix notation: -(col) we have

F
v 'li j v(v) 0

V ,21 l 0 I
= I

V,31 I 0 0

V '4/ -L_ (v) 0

o - W(v)

0 0

1 0

0 _(v)

VI

V2

,V3

V4

V - four-velocity of particle

u - ordinary velocity of particle

v - relative velocity of inertial

frames

from which follows

i
V' = _(v)(V I - vV4) , V '2 = V2 , V '3 = V3

V ,4 = V(v)(V 4 - vvl).

(5.8)

(5.8) holds for any four-vector A% under standard Lorentz transformation

if the kernal symbol V is replaced by A. Since

 <u)u >-- _ , v(uD

we have from the second of equations (5.8):



V(u) = V(v)(l - vuI) ,

and from the first of (5.8):
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(5.9)

or

=y(v) (u) u - vy(u)

U ! (uI v)
= V(v) y(u')

i

u,l = U - V

(i - vuI)

,2,3 =
2,3

U

v(v) (i - vu l)

(5.1)

which are the same transformation laws as given before. Thus, the

transformation properties of the ordinary velocity are contained in

those for the four-velocity. With a given four-vector B£ there is

associated new quantities defined by

Bk
B_ = _k

(5.10)

The four-vector is characterized abstractly by the kernal symbol B;

the components B% are called the contravariant components of B while the

components B_ are called the covariant components. The difference in B%

_na n_ _° _-_ _'LL_ytransform di£_erently under Lorentz transformations...... _LL_L

B_ transforms as:

B '_ = L_ Br
r

or in matrix notation



i
B'

2B'
3B'

I 4B'

=L

BiT
2

B3

B4

 (row)
where L is the four by four matrix -(col)

B_ is

k

B'_ = LZ B k

The transformation of

where L_ k = _p _ks Lks and _ks is the inverse of _s defined by

_s _ks = 6%k "

One finds _%k has the matrix representation

matrix _k = -i 0

-I
= matrix _k = 17
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(5.11)

In matrix notation the constraint on the Lorentz matrix (5.6) can be

written

Lks = _rs <----->LT _ L = _ ' by

(T = transpose)

matrix theory we can also write

L T _ L = _<_ L _ LT = _ <_ Lr q]sPL_ - = _r_
I I I I I I I l s

Using these results one can show that the transformation of B% may be

written

B'
1

B'
2

B'
3

B'
4

= LT'I

I

(5.12)



That is, if B_ is picked to transform under the usual representation

of the Lorentz group L, then B_ transforms under the contragredient

representation LT-I. These two representations are equivalent because

L T-I = _ L _ . In the terminology of modern algebra, if B_ lies in

the vector space M4, then B% lies in the vector space M*4, dual to M4.

In terms of co- and contra-variant vectors we can write the scalor

product as

where

C k Bk
(B.C) = _k B_ = Ck = C_B%

= -B.C + B4C 4

B% = (B, B4) and
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B_ = (B, B 4) .

We shall now consider other four-vectors in M4. The four-momentum

of a particle is proportional to the four-velocity, the proportionality

constant is called the rest mass, m

2
= m V%; _P% = m (5.13)

The rest mass of a particle is an invariant under Lorentz transforma-

tion but if you just heat a particle the rest mass changes as we shall

later see. The acceleration four-vector A_ is defined to be parallel

to the first normal of the world line of a particle.

# = dV 6 d2x _=-- (5 14)
d_ d_ 2

The four acceleration is normal to the four velocity (and four momentum)

(A.v)= = v = 0 (5.15)



[this means that A must be space like as can be proven from (5.7)].

Since

then

A_ _- d (_(u) u), _ X(u)
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which can be written

A_= _(u) 2 _(u) 4 _(u) 4 >+ _ _.a, u.a (5.16)

where

du d 2
- is the ordinary acceleration

_[E dt 2

of the particle. The magnitude of A_

a o _ (5.17)

is the curvature of the world line and physically is the acceleration

which would determine the apparent weight of a piiot riding in a rocket

along the world line.

It is clear that one can always make a Lorentz transformation such that

the space components of @ are zero (instantaneous rest frame). That this

be done for any time like four vector is easily proven. On the other hand,

one can always make a transformation which eliminates the time component

of a space like four-vector. In the case of the velocity and accelera-

tion the same Lorentz transformation (instantaneous rest frame) brings

them to the form:

v_ = (07 l)
0

(5.18)

A_o = (_o' O)
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Fig. 5.3

For some reason the myth that one cannot treat acceleration in special

relativity is widespread. This is just not the case. An accelerated

frame of reference is a complicated thing and the transformation formula

between an inertial frame and an accelerated frame will not be a Lorentz

transformation as defined previously, but it does exist even in special

re lativity.

B • Rectilinear Motion for Which the Acceleration a
o

Rest Frame Remains Constant (Hyperbolic Motion)

in the Instantaneous

S

v

_ [_- at

AEr..,F..LE I_AT I Md-1
O_E f_VEP..,

Fig. 5.4

L. Marsh, Am. Journ. Phys., page 934, 1965.



Since the square of the four acceleration is Lorentz invariant, we

can write

2
_" -a

dT dT o
= const
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(5.19)

In an inertial frame S

rav C
\d-_-J + \d-7-J

2

0
(5.20)

Us ing

V 1 V4= V(u)u = y (u)

d_ =V 3 3u odu = _(3udu, d_u = _/ du

3 2 3
or dy = V u.du = u.(dvu ) ; _( + u V

(5.20) becomes

1/ d_,(u)ud7 = ao

In terms of coordinate time we write this as

3
=_

hence

d d u

d-_ (_((u)u) = d--t(I - u2"I/2) = a°

U

= a t + const.
u 2_ o(i - 112

If u = 0, t = 0 then const. = 0 and

U

(i u2) I/2

solving for u one finds

dE

dt

and integrating again gives

= aot = u_(u)

a t
O

(i + a 2t2)i/2
O

(5.22)

x(t) = lla ° (I + a 2t2)I/2 + const.
O



If x = 0, t -- 0, then const = -
o

1
/a and the solution is

x(t) : l/a ° <(1 + ao2t2)l/2 - 1

(5.23) can be written in the form

2 2 t2x +--x- =0
a
o

which is the equation for the path of the accelerated observer in the
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(5.23)

(5.24)

x,t plane. If we consider the observer at the origin of an accelerating

coordinate system the coordinate transformation connecting the inertial

frame S(x,t) with the accelerating frame S'(x',t') is

i 1
x = - /ao + (x' + /ao) cosh aot'

t = (x' + i/a ) sinh a t'
o o

\
\

\@
\

\

(5.25a)

(5.25b)

Fig. 5.5



Notice that light signals i) emitted from the origin of S after t _ i/a °

will not reach the accelerated observer, whereas light signals 2) emitted

by the moving observer will always reach the origin of S. A clock car-

ried by the accelerating observer will read a time dT which is related

to the coordinate time of S as in (4.12):

d_ = (i - u2) i/2 at
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(4.12)

_t 1/2= (i - u 2) dt

o

Using (5.22) this can be written

t

= i/a _ i t
o 2t2)i/2 daoo (l+a

o

and integrating

i sinh-i
T = /a ° aot

or

a t = s inh a
o o

at -at
o o

e -e
at =
o 2

(5.26)

thus as a t _ =, a • increases much more slowly than t:
o o

a
o

2at_e
O

or

a T _ £n 2a t .
o o

Thus, as t - _, _ follows logarithmically.
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V

Fig. 5.6

From (5.26) and the identity

2 2
cosh x - s inh x = i

follows:

u = tanh aoT , y(u) = cosh aoT

I
a t = sinh a T , x = /a (cosh a _ - i)
O O O O

(5.27)

If one considers deacceleration with initial conditions t = 0, x = x
O _

u = u , t = t , x = 0, u = 0 then one has merely to replace t byo o

t
o t in the above results. That is to say the moving clock is slowed

both in acceleration and deacceleration. Some interesting numbers can

be obtained from (5.27); if a = g the acceleration of gravity at the
o

earth's surface then for x = 3.4 X 109 light years; T = 22 years. There-

fore, if one could accelerate at g for 22 years he would be at the edge

of the detectable universe. A real solution to this problem would
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require cosmological considerations. For a round,trip to Andromeda, the

most interesting nearby galaxy, x = 2 X 106 light years; if the rocket

accelerates at g for 14 years and then deaccelerates at g for 14 years

it will arrive at Andromeda. If the rocket has the sametype of return

trip then • = 56 years for the round trip and the earth has aged about

2 × 106 years. (The rocket is traveling at very nearly the speed of

light after _ = i year as seen from the earth, the maximumspeed of the

rocket occurs at midpoint and is u = .9999999999995C.)

A further study of the rocket can be carried out using the

sameanalysis as in the Newtonian case. Let I denote the relative
o

velocity of the ejected mass as measured in the instantaneous rest

frame of the rocket, r denote the burning rate and M the massof the

rocket in the instantaneous rest frame. Then by conservation of momentum

in the instantaneous rest frame or Eq. (5.20)

I r = M a (5.28)
o o

where a is the acceleration. Substituting for r yields
o

or

a
dM o
--= - -- dT
M I

o

a
o

M=Me _m_
o I

o

(5.29)

-.I--" _I- • I I . _ _

w.-_. is usual rocKe_ equation, ir iu[L_ = i, i.e , the ejection velocity
o

is equal to the velocity of light in vacuum, then one finds for the trips

previously discussed

M i

M- _ 2000
o

(Alpha Centauri)

M 25
_--_ i0- (Andromeda)
o

(5.30)

M i I
In present day rockets, Saturn, etc. this ratio _- is between _ and' 50

o
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A. Dynamics of Particles

From Einstein's first postulate for special relativity we

know that all physical laws must have the same form in all inertial

frames. Another way to state this is to say that all laws must be

covariant (form invariant) under Lorentz transformations. Let us

formulate this mathematically. Let

F(A,B,C, ...) = 0 (6.1)

be a physical law in a reference frame S. Carry out a Lorentz trans-

formation to a new reference frame S' Let A',B',C', ... denote the

transformed variables appearing in the physical law (6.1). Then by

Einstein's postulate the physical law in S' must be

F(A',B',C', ...) = 0 (6.2)

where F has exactly the same functional dependence on A' ,B' ,C' as it

does on A,B,C, ... Now we can use Einstein's postulate along with

the known transformation properties of four-vectors to write equations

satisfying Einstein's postulates. The first such equation we shall

look at will be Einstein's generalization of Newton's second law. When

we wrote Newton's second law before

F_ = dP_
dt (i.i)

we left undefined the expression for P_. We do know, however, that in

the low velocity approximation

p_ =mu _ dx_
= _ , U/c<< 1 (1.2)

where m is called the inertial mass. In analogy we assume the four-

vector generalization of (i.i) is



f£ = d__
dT

where _ is the four momentumdefined in (5.13) and f% will be called

the four-force acting on the particle.

m

(6.3) is certainly a covariant equation but we must now explore its

physical meaning and connection with (i.I). Since dt = _(u) dr (6.3)

can be written

= v(u) Tf- •

The first three components of this equation can be written

i/y(u) f_ = dm Y(u)u_dt

Comparing (6.4) with (i.i) we see that

= m (u)u

ordinary force = F_ = i/v(u) f_
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(6.3)

(5.13)

(6.4)

(6.5a)

(6.5b)

In the low velocity limit the_uation (6.3) will therefore yield the

empirical Newton laws (1.3). It is an empirical fact that the asso-

ciations (6.5) are indeed correct. Thus, the inertial mass of a

particle m(u) depends on its speed u

m(u) = m V(u).

The inertial mass in the rest frame of the particle m(o) = m is just

what was defined in Newton's theory as the inertial mass. In relativity

the inertial mass is m(u) and the mass m(o) or m is called the rest

mass. The rest mass of a given particle is an invariant under Lorentz

transformation but it of course can be changed by physical transforma-

tions such as heating the particle. Writing the law of motion in

(6.5)
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expanded form
d_

# = m_-- + _ d__md_ (6.6)

we see that the four-force can be broken into two pieces; the non-

dm d_
mechanical _ _ and the mechanical m d-_- If the rest mass is con-

dm *

stant, then _ = 0 and the force is purely mechanical. In what

follows we shall consider only the mechanical force unless explicitly

stated otherwise.

d_ A %
f_ = m d--_-= m . (6.7)

Note that since A% V_ = 0, fZ must satisfy the constraint condition

EZ V_ = 0 (6.8)

when it is purely mechanical. We shall see later that the electro-

magnetic force acting on a charged particle satisfies (6.8). From

(6.8) follows

f4 = f_ u (6.9)

therefore for mechanical forces the four-force is

, u u

We have accepted Newton's first, second, and fourth laws of mechanics,

but what about the third? Newton's third law cannot be accepted in its

Newtonian form. That this is true follows from the transformation

properties of the ordinary force F_ in (6.10). By comparison with the

transformation formula for the velocity (5.2) we can see that (for a

(6.10)

The generalization of Newton's law to the case where the

system expells mass (rocket) can be found in: K. Pomeranz, Am. J. of

Phys. 32, 955 (1964).



Lorentz transformation "without rotation") the ordinary force transforms

according to:

= + 2 -
v

Clearly, the force has a complicated transformation property and if

Newton's third law holds in one frame it is not necessary that it hold

in another frame. Short range forces (essentially contact forces)

which are active only when the particles are in contact do imply Newton's

third law true, since if the forces are equal and opposite in one frame

it follows from (6.11) that they are equal and opposite in all frames.

We also expect Newton's third law not to survive if we remark that it

is the statement of the equality of two forces acting at different places

but at the same time. However, as we have seen simultaneity is a rela-

tive concept.

69

(6.11)

B. Energy and Conservation Laws

The concept of energy arises in Newtonian physics as a

first integral of Newton's equation (1.3). We now attempt the same

analysis of the more general law (i.i):

F_ dP_ d y(u)u _
dt dt

multiply by dxB and summing _ = _ yields

F_ dx = m u

(dx = _ dx_) ,

dt ,

integrating from event gl to g2 yields

(1.1)

(6.12)
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i2FO{ dx = - m d %((u) d t
dt

81 81

(6.13)

where use has been made of dy = _ • d(_). Now the change in kinetic

energy from 8

hence,

i to g 2 is defined to be the work done on the particle,

T2 - T I = m Y(u2) - m _(Ul)

where T2, T 1 represent the kinetic energy of the particle at 81 and 82"

We require Tlu_o = 0. Thus, the kinetic energy of a particle having

rest mass m and speed u is

T(u) : my(u) - m , (6.14)

independent of what type of forces act on the particle. For a free

particle _ : 0 (6.12) yields

dT
-- = 0 T = m y(u) - m = constdt (6.15)

as a first integral. In this case the total energy W is defined as

my(u) and we write

( free
const = p4 = W = T(u) + m = my(u) kparticleY" (6.16)

Consider a collection of particles.

h ,th
the At- by the A--. Then the equation (6.13) becomes

t_ t_
2

be the force extended on
Let FAA ,

(6.17)



whe re

WA = mA _(u A) = TA + mA

and mA is the rest mass of the A th particle. In the Newtonian theory

FAA ,(t) = -F A (t)

Relativistic mechanics is very complicated for the very reason that

this equation cannot be true in a relativistic theory (effects cannot

propagate at speeds greater than that of light). We shall discuss a

scattering experiment where the complications arising from this are

rainima I.

i) Scattering: Suppose we are considering a number of

particles, then (i.i) becomes

r F =m
dt

A' AA'

sun_ning over all particles and integrating yields,

+T +T dP[

EA,A,FAA, dt = E A dt (A#A')

-T -T

Even though we cannot use (6.19) it is safe to assume that if free

particles in the initial state -T scatter into free particles in the

final state +T then the integral

+T

lim __ EAA,T__ = FAA , dt = 0 (A # A')

-T

(This is assumed to hold in all inertial frames_)
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(6.18)

(6.19)

(6.20)

(6.21)
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From (6.20) follows

T PA_ = P_ = const.

Thus, the three momentum P_ is conserved in scattering processes.

De fine

(6.22)

which implies

pf4 = p41 or Wf = Wi (6.24)

hence, under the assumption (6.21) the linear momentum and energy are

conserved in a scattering processes. The conservation of four-momentum

E Pf_ = Z Pl'% (6.25)
f i

is a fundamental law of'physics which has been experimentally verified

many times. 2) composite "particles".

The results obtained in (6.16) are also valid for a composite system of

particles as long as the system is u_u==_-1--^_v_ io_1o_=a__.......Th_s follows

directly from (6.20) if we assume T is greater than the time taken for

light to traverse the system under consideration then

+T

_ T > > (characteristic_A,A' FAA' dt = 0 dimensions of the system)

-T
(6.26)

N_ -- l_f - P_i (6.23)

where _f is the final four-momentum and _i is the initial four-momentum.

By (6.21) N_ = 0 in all inertial frames• This implies that N 4 = 0



and

d__P= --0 = P= = const
dt

these conditions are the same as (6.22) and hence it follows that

the energy momentum four-vector of the composite system is

or

Here u

rest mass.

rest mass,

P_ = MY_ = M_(u)d, My(u)

P_ = ({, W).

represents the velocity of the system as a whole and M its

Thus, the rest energy of a composite body is equal to its

W = M.
o

In a composite body, say an atom, where does the rest energy reside?

The energy resides in the rest masses of the constituent particles,

the kinetic energy of the constituent particles, and in the energy of

interaction between and among the constituent particles. Suppose we

have a number of particles which form a composite body, then

M = Wo --Z mA +_ TA+ _ VAA' + _ VAA'A '' + ....

A,A' A,A' ,A"

(A # A' # A" .... )
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(6,27)

(6.28)

Let Vint = _ VAA , + 7 VAA,A,, + ....

Where the Vint is the interaction energies of the basic particles•

Suppose we form a nucleus. To do this, we carry out the following steps:

2) Bring Z protons and N neutrons together with all inter-

actions "turned off". The rest energy in this configuration is:

M' = Wo = 7 mA+7 TA '
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2) Turn on the interactions. The rest energy now becomes

M = M' + Vint (6.29)

therefore if the composite configuration is stable ==> Vint < 0

W O = M = 7, mA + _ TA - IVintl . (6.30)

For stable nuclei it is always observed that

M - _ mA = T, TA - IVint I < 0

indicating that the interaction energies are greater than the kinetic

energies involved.

m

proton

mneutron ffi

me lectron =

M = m icl2_=

Example :

ffi 938.211 Mev.

939. 505 Mev.

•511 Mev.

11177.233 Mev.

experimental

numb ers.

(6.31)

mA = [6(938.211) + 6(939.505) + 6(.511)]Mev.

T. m A ffi11269.334 Mev.

IM- Y' mAl = 92"i01 Mev" _ 1"64 X i0"25 gms" I for<6 2_cii cal. = 2.613 X 1013 Mev.

Note: (The masses above are for the system m8016 = 16.000 a.u.

the official system is M 12 = 12.000 a.u. and in this system
6c

m8016 = 15.995)(no practical difference between th_se systems).

From (5.13) it follows that for a free particle

p_ = _p2 + W 2 = m2 or

Now

2
W2 = _p2 + m (6.32)



which is the relativistic relationship betweenenergy and momentum.

Also the following relation between the energy and momentumholds

P=Wu.

For u = i the energy and momentumof a particle becomeinfinite, thus

a particle with m different from zero cannot movewith the speed of

light. However, for zero rest mass particles we assumethe limiting

form of (6.33) to be

P=W,m=0.

Thus, the momentumfour-vector of a zero massparticle is a lightlike

vector. One can represent the four-momentumof a zero mass particle

in the form

: W(n ,1)

Here n is a unit vector in the direction of the propagation of the

particle. If one prefers to speak of the wave properties then the

wave vector k_ can be introduced by the definition

_ :he % , W:hu

is the frequency associated with energy W and his Plank's constant

h = 6.63 X 10 -34 joule-sec.

Relativistic mechanics of point particles is not nearly as successful as

its Newtonian counterpart. Even though one kno_the basic law of motion

(6.3) one cannot write realistic forces f% easily because of the break-

down of Newton's third law. In general the form of f_ makes (6.3) a

nonlinear integro-differential equation and not much is known about such

equations. In particular one has not been able to prove that unique

solutions for these equations exist or not.
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(6.33)

(6.34)

(6.35)

(6.36)
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A. Periodic Disturbances in Special Relativity

Let A represent a general periodic disturbance in a frame S.

As an exampleA could be of the form

A = A° cos(k._ - wt) _ (7.1)

A could have a genera'l transformation property, k is called the pro-

pagation vector of the wave and w is its frequency° These can be com-

bined together to form the wave vector kr:

kr = (k, w) (7.2)

Using the wave vector the distrubance A can be written

A = A° cos(kr xr) (7.3)

r
The quantity @= k xr = -_k.x + wt is called the phase of the disturbance.

It is clear that the phase @must be an invariant under Lorentz trans-

formation becauseA -- 0 in S must imply A' = 0 in any other inertial

frame S' That is, a periodic wave in one inertial frame must be a

periodic wave in every inertial frame. This is equivalent to asserting

the wave vector kr is a four-vector. Knowing this, we can write down

the transformation properties of kr immediately:

k' =k+ i/v2 - vv
\

®' = _(_ - _k.v)
J

(7.4)

v = velocity of S' with respect to S ; -v = velocity of S wrt. S'

(7.4) gives the transformation law of kr between two frames S, S' which

differ from one another by a Lorentz transformation "without rotation".

The speed of propagation of the wave disturbance (phase velocity) is



W -- --
k • Suppose the source of the periodic disturbance is moving

away from S at velocity _ and sends the disturbance to S. In S' the

kinematic characteristics of the disturbance are k' _' and W' and

in S they are k, w, and W. The connections between S and S' can be

written
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k_l = k'cos _' = ?(kll-00v ) = _k(cos _ - Wv)

kl = k' sin @' = k I = k sin

w' = y(w - k cos _ v) = vw(l-V/w cos _)

i (7.5)

Here _ is the angle between _k and v in S and _' is the angle between

k' and v 'in S' It is convenient to consider the angles _ = _-_ and

5

f
f

V

Fig_ 7.1



The transformation formulas are:
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k' cos0' = yk(cos0 + Wv)

Jk' sin0' = k sine

_' = _w(l + v/_ cos_)

From the top two equations follows the relativistic aberration formula:

tan8 ' =
sin%

7(cose + Wv)

(v.5)

(7.6)

and the last equation

V

_' = 7w(1 + _ cose) (7.7)

is the relativistic Doppler equation.

From the invariance of k kr = -k 2 + w2
r

under Lorentz transformation

follows

(7.8)

Using (7.7) in (7.8) yields

&
CI + v/W cos e 2)

(7.9)

(7.9) gives the transformation properties of the disturbance velocity

W. Since v cose = vR is the radial velocity of S' one can write the

Doppler equation

0) !

vR

In the classical limit this reduces to the classical Doppler formula.

If a sound source S' is moving away from an observer S at rest with

respect to the air, say, then the classical Doppler shift is

(7.10)
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(7,n)

where W is the speed of sound in air. (7.11) differs from (7.10) only

in the _(v) term which implies a differing of terms in v 2. Experimen-

tally one cannot measure the difference between (7.10) and (7.11) for

sound waves. In most applications one is interested in equations

(7.6) and (7.7) for light W = I,

or

tan@' =
sin@

7(cose + v)

@, ½ @
tan_ =/l-vh tan --k.l+vY 2

(7.12)

_' = _(i + v cos@). (7.13)

Two cases for (7.13) suggest themselves i) @ = 0°

w --v(l+v) (l+v)½

this is the longitudinal Doppler shift, 00 < w' _-> % > %' which is

called the Doppler red shift: 2) @ = n/2

UD

this is the transverse Doppler effect which is just the inverse of

time dilation, this has been checked using the _f6ssbauer effect.

Inverting (7.12) we can write

tan@ =
S in@ '

(cose' - v)
(7.14)

The classical aberration formula can be obtained from (7.14) by taking

= i. If 8' is the angle between minus the earth's velocity and the



actual direction to a star while e is the angle betweenminus the earth's

velocity and the apparent direction to the star, then (7.14) connects

these two angles. The constant of aberration _ is the apparent dis-

placement of a star when the earth is revolving at average speed at

right angles to the stars direction e' - _/2
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Aberration of Starlight

Fig. 7.2



tanO= -1/. w , O' ='n'!2

v_ i0-4; v = 3 X 104
sec.

or

tan B _ _ = vy _ v

_ 20.5 sec. of arc.

The constant of aberration gives a measure of the size of apparent

orbit of a star due to the aberration of starlight. The aberration

orbit traced out by the star depends upon its location on the celes-

tial sphere, it is a circle at the ecliptic poles, a straight line at

the ecliptic equator and an ellipse in between. The constant of

aberration is the same for all stars and measures the radius of the

circle at the ecliptic poles, half the length of the straight line at

the ecliptic equator, and half the major axis in between. The aberra-

tion of starlight was first noticed by Bradley in 1727 and was the first

conclusive proof that the earth actually moves about the sun instead of

the opposite. The aberration orbit of stars is independent of the

size of the earth's orbit and depends only on the fact that the earth

has a changing velocity. The parallax (heliocentric) of a star is due

to the fact that since the earth is revolving around the sun, a nearer

star seems to be describing a little orbit with respect to the more

distant stars. This apparent orbit has almost the same shape as the

aberration orbit. Tb_e para11_x o_hit _s much smaller than the aberra-

tion orbit, being around .76" for the nearest star Alpha Centauri at

4.3 ly. and smaller than this for all other stars.

81

(7.15)



-o

82

EA TH 

Heliocentric Parallax of a Star

Fig. 7.3

For completeness we might mention a third type of motion associated

with stars. This is change in the stars position on the celestial

sphere due to its actual motion. This is the so-called proper motion

of the star. The known proper motions of only about 330 stars exceed

I" a year and the average for all naked eye stars is not greater than

0.i" per year. Barnard's star has the largest observer proper motion

of 10.3" per year.
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A. Tensor Analysis I

Tensor anal_.$is concerns the transformation of quantities from

one frame of reference to another. The differential dx L is a tensor and

'L f_(x)* canits transformation law under coordinate transformation x =

be written

dx'L = (Sx'_ 1 dxr:

\_xr/

(8.l)

A scalar @ is also a tensor and its transformation law is the simplest

_'(x') : re(x). (8.2)

The gradient of a scalar _L_ = @,r is also a tensor and its transformation

_x r

law is

_-= (_x_ _ _-_ (8.3)

'r

The two transformation laws (8.1) and (8.3) look very similar. If one

considers linear transformations, then x ,L = L _x r and (8.1) is the
r

transformation law given previously for a contravariant vector, while

(8.3)is the law given for a covariant vector. Thus, (8.1) is the

transformation law for a contravariant tensor of rank i and (8.3) is

the transformation law for a covariant tensor of rank I. (The rank of

a tensor is.just the number of indicies it carries, i.e., is a second

rank tensor, a vector is a first rank tensor, etc.) This leads us to the

For present we assume that all coordinate transformations are

single valued_ continuous, differentiable, and have non-vanishing Jacobian

(which implies the inverse exists).
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following definitions: I) A set of quantities A%are said to form a

contravariant vector if their transformation law is

A'%(x ') = _ Ar(x)
_xr

(8.4)

2) A set of quantities B_ are said to form a covariant vector if their

transformation law is

B _(x!) _xr Br(X). (8.5)
5x

For tensor transformations the "group property" holds. That is if we make

two transformations x -- x' -- x" then the transformation is the same as

x -_ x". We shall show this in detail.

We have

x-_ x , A,% _ 5x A r

_x r

therefore

and since

X l -_ X II A,,s _ 5x ''s A p,'
!

5x p

A,,s _ 5x ''s 5x'P A r,

5x 'p 5x r

_x',S 5x, p _"s

5x 'p 5x r 5xr

then

= _x vvSA ,,s __ Ar '

_x r
(8.6)

which is the transformation x _ x". Thus, the tensor transformation law

implies the group property



f(T2TI) = fT2 fTI"
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The generalization of the transformation laws to higher rank tensors is

to treat each covariant index as in (8.5) and each contravariant index

as in (8.4). Thus, if Trs ..... is a r
..pq ....

th
rank tensor it transforms under

the law

Irs
T .,,,

Pq ....
.... T .m....

8x _ 5x m 8x, p 8x' q nx ....

rl,factors r2 factors

(8.7)

here r I is the number of contravariant indicies and r2 is the number of

covariant indicies, clearly r I + r2 = r. The usefulness of tensors

follows from the following fact: If a tensor equation holds in one

coordinate system then it holds in all coordinate systems. This is

because the transformation law for a tensor T .... is linear and homo-

geneous in T .... If a tensor equation is given in one frame

T r .... = C
...r..

s ....... _..

then it automatically follows that in another frame

!

r .... = n' ...r..T
S ....... S..

B. Algebra of Tensors

Given various tensors T s ....
r

define several algebraic combinations:

Ss .... and U s ....
r ' r

one can

i) The sum of two tensors (having the same number of co- and

contra-variant indicies) is a tensor



Ts .... + Ss .... = Us ....
r .... r .... r ....
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2) The multiplication of two tensors is again a tensor

Ts .... Sp .... = usP ....
r .... q .... rq ....

3) Onemay take the trace on any pair of one upper and one

lower indicies thus reducing the rank of the tensor by 2, this process

is called contraction.

T s .... th > T s .... )thr E rank tensor. (r-2 rank
r .... contraction s .... tensor

r -- s

Notice that there must be one upper and one lower index, a symbol such as

Trr or T is not defined.'
rr

4) One may contract indicies across a tensor product. This

process is called transvection.

Tr .... Sp .... > Tr .... Sp ....
s .... q .... Transvection s .... r ....

5) Alternation (antisymmetrization) over indicies is defined

as T[iljlk] =_2: jk - Tk '

where the indicies set off by_ bars I are not acted on by the [] operator.

6) Mixing (symmetrization over indicies is defined as

Any second rank tensor T.. can be written
lj

Tij = T(ij) + T[ij]
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A tensor is called symmetric if T[ij] = 0 and antisymmetric if T(ij) = O.

If one is given a set of functions T.. then one can use the quotient rule
lj

to test for the tensorial character of the functions. The quotient rule

is: If a set of functions T.. when combinedby a given type of multipli-
ij

cation with all tensors of a given type again yields a tensor, then the

functions Tij are tensors. The proof is elementary and can be found in

any text on tensor analysis. (For example, Schaum'soutline, Vector

Analysis) In particular if Ak .... Bk = 0 for all vectors Bk then Ak'il I = O.

C. Differentiation of ensors

'_ f_For general coordinate transformations x = (x) the sumof

tensors located at different points is not a tensor, however, for linear

transformations the sumof a numberof tensors located at different points

is again a tensor That is let A_(xI) and A%. , (x2) stand for A_ evaluated

at two different points xI and x2 then these transform as

\

A'L(x i) _Sx r / x I (Xl)

A'_ (x'2) = r (x2)

x2',\_X /

Adding these yields

A'_(X'l) + A'%(x'2)
_X r /Xl (Xl) \_X r /X2

(8.8)

under linear transformations we have

- c°nst" = a% =A'_(X'l) +A_(x'2)r = ar%_A%(Xl ) + A_(x2
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or the sumtransforms as a vector only under linear transformations.

Becauseof (8.8) the derivative of a tensor of rank > 1 is not a tensor

under general coordinate transformations because it is constructed from

tensor evaluated at two different points. Consider the derivative of a

vector AL(x). Howdoes dAL transform under coordinate transformations?

Since

'% ArA'L(x ') = _ x _ -

r r _x r

we have

'L
dA = _rX' _ dAr + A r(_s_r x' %) dx s

thus only under linear transformations will dA L transform as a vector.

The reason for this is clear, dA r represents the difference of two

vectors located at different points

dAL = AL(x + dx) - A %(x).

(8.9)

(8.10)

I
/
X

Fig. 8.1
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What one needs is to replace (8.10) by the difference of vectors located

at the samepoint. What is done is to carry A_(x) to x + dx in a definite

manner. The carrying of A_ to x + dx is by parallel propagation of A%

from x to x + dx. (Weshall define parallel propagation precisely later.)

Wewrite the parallel propagated vector in the form

(x + dx).All

The difference between the vectors

(x + dx)DA_ = A_(x + dx) - All

is now a vector and is called the covariant differential of A%.

(8.11)

(8.11)

Rewriting

IA% _ A %DA% : A_(x + dx) - A_(x) - ll(X + dx) (x

or

DA _ dA _ A%
= - dll (8.12)

The most general form for dll A% (which is the change in A % under parallel

propagation) is

A£ - L_ A r dx s (8.13)
dll = rs

where the L% (x) is called the affine connection.
rs

(Sometimes L% is
rs

called the linear connection or coefficient of affine displacement.) The

covariant differential of A _ can now be written:

DA £ = dA% + L% Ar dx s. (8.14)
rs

s
If A % is defined along a curve x (%) in the space, then

DA _ dAZ LL A r dx s
dl - dl + rs --dl (8.15)
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is called the absolute derivative of AL along the given curve. The fact

that the absolute derivative (or covariant differential) of a vector (or

tensor) is a tensor yields the transformation law for the affine connection

using (8.14) and (8.9) one finds the connection transforms as:

L 'L (x') = 5x'---_L5xm 5xn

rs 5x p 5x,r 5x,S

P -(.5xm------_/.5xn_--_.__52x'L

Lmn (x) _x'V\ _x's/ _xm_x n
(8.16)

Therefore, Lp is not a tensor in general. In a like manner the covariant
rs

differential and absolute derivative of a covariant vector A L are given by

DA L = dA - L_r A dx rP

A r
d_ d% _r p d%

(8.17)

Of course at this stage the affine connection for A L and A L does not have

to be the same. It is easily verified that (8.17) are vectors. One

k .... where each
generalize6 these definitions to an arbitrary tensor TL .... ,

index is treated as if it were a vector. One has

DT_ .... = dT_ .... + Lk r .... dxs - Lr Tk .... dxS + (8 i8)........ rs TL .... Ls r .... "....

Again one may prove that the covariant differential of a tensor is a

tensor. For the case of a tensor field one may define the covariant

r
derivative of a tensor with respect to x

k ....

as
T_ .... ;r which is given by

k . ° ..

iiii: ....dxr" (8.19)
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Let us summarize the various derivatives discussed:

i) Covariant differential

= dT_ .... + Lk Tr .... dxs - Lr Tk .... dxs.... rs L .... Ls r .... """'

Absolute derivative along a curve x%(k)

illl
dk

2)

3) Covariant derivative

.... k dx sDT = TL; s

A tensor is said to be parallel propagated along a curve xL(k) if

DT k .... = 0

dk

(8.20)

is satisfied along the curve. For a vector AL this yields

DA L = 0 _- dAL = -LL Ardx s = dlIAL which is the same as (8.13).rs

From the transformation properties for the linear connection

one can prove the following fac.ts: Let L L , L *L be two affine connec-
rs rs

tions, then the sum

in an affine connection and the difference

ly_ = L L _ L*L
rs rs rs

is a tensor. Let us specalize these results to a given affine connection.

If L% is an affine connection then L_ is also an affine connection and
rs sr

L L can be decomposed as
rs
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Lg = L %. + LL
rs  rs) [rs]"

L_rs] rs sr = /2Trs defines the torsion tnesor TrsL

In what follows we shall be in[erested primarily in spaces described by

Riemannian geometry. Such a space is called a Riemannian space and is

denoted by V 4. A Riemannian space is obtained.from the general structure

discussed so far by admitting a second rank symmetric tensor gij = gji

into the space. This tensor is called the metric tensor. In V 4 we may

define a scalar product between pairs of vectors using the metric tensor

A i Bj scalar (8.21)
gij = "

We now show that under several assumptions a unique linear connection is

defined in V 4. First the concept of raising and lowering of indicies is

explained. Instead of writing the scalar produce as (8.21) one can define

a covariant vector associated with A i B ior by the relation

Ai
Aj = gij (8.22)

(_he analogous result for Minkowski space in equation (5.10))

then (8.21) becomes

A
i

Bi = scalar.

A. and B i are called associated vectors Under the following assumptions
1

there is a unique symmetric affine connection in a Riemannian space:

i) DAL and DA L are associated vectors

2) the torsion T L is zero.
rs
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We first calculate the covariant derivative of the metric tensor and

permute the symbols twice

= _ LL _ L L
gij;k gij,k ik g_j jk gig

gki;j = gki,j " Lkgj gLi lj gk_

"gjkii = "gjk,i + LLj i gLk + L_ki gj_

__J

Adding the three equations yields

(8.23)

2[jk,i] =2L _ _ki T. L(jk)gL i" gj_" 3i gLk" gij;k- gki;j + gjk;i ' (8.24)

Where the symbol

+ gki,j - gjk,i) (8.25)

is called the Christoffel symbol of the first kind_,and the other symbols

have been defined. We show that assumption i) implies g_k;i = 0. The

covariant differential of a scalar is the same as the ordinary differential

because it is already a geometrical object (i.e., a covariant vector),

D(ALBL ) ffi d(ALBL ) = dALBL + ALdB_

writing this product out one finds

D(ALB_) = DA BL + AL DBL"

n I.

Applying the same analysis to the form (gLkA_B "') yields

= ALB k gLkALDB k - g.kALL k Br dx sD (A_B _ ) dg_k + L rs

+ gLkBgDA k - ggkBkL_s A r dx s.
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Under assumption I) we can write g%kDA k = DA therefore

D(A B_) = D(A%B _) + Ig%k,s
P - LP g I A _Bk dx_

Lksg%p ks pK

or
P I A_Bk dxs 0P _ LLsgpk =%k,s - Lksg_p

by three applications of the quotient theorem we deduce that

L p P= - - L g = 0
g%k;s g_k,s ksg_p ks pk

(8.26)

Using (8.26) and the fact that the torsion vanishes, we have

L_
[jk,i] = g%i 'jk

and

L_ " F_
Jk = g%i [jk,i] = jk

where F%
jk is called the Christoffel symbol of the second kind.

In general relativity one usually considers the Christoffel

symbols to be equal to the connection (8.27); however, this is not

necessary, a fact which Einstein used to construct some of his "unified

field theories." In this work we deal only with general relativity in

the usual form, we do not conmider any connection except (8.27).

(8.27)

B. G_n_

In Euclidean geometry one makes frequent use of straight lines,

while in spherical geometry one uses great circles. Both of these curves

are geodesics of the geometry they are used in. In both of these

examples one knows that these geodesics are the curves of shortest length
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connecting two given points in the space. Again in Euclidean geometry if

one considers an arbitrary curve C, then its tangent vector has an arbi-

trary direction as one proceeds along the curve. However, again the

straight lines have the property that their tangent vectors from point to

point are parallel. This leads us to the abstract definition of a

geodesic curve. A geodesic curve is a curve whose tangent vector t L - dx_
d%

undergoes parallel propagation along the curve. That is,

DtL dtL + F% trt s d2x L- - + r L dx--rdx---_s= 0 (8.28)

dX dX rs d%2 rs dk dX

Equation (8.28) is a set of four ordinary differential equations, and

thus has a unique solution corresponding to the initial conditions xL(%o) ,

tL(%o). If one makes a change of curve parameter, say _ = f(k), then,

equation (8.28) becomes

d2xL + FL dxr dxS C(a) 4x_

de2 rs do d_ d_

where C(o) is a definite function of _ whose form does not concern us

here. If a parameter is chosen such that the equation for the geodesic

takes the form (8.28), then the parameter X is called an affine

parameter. (If we have an affine parameter associated with a geodesic,

we can still change the scale and the origin k _ C i X + C 2 where C i and

C2 are constants.) The equation (8.28) has the first integral

dx L dx k

gLk d% dX - const. (8.29)

When the scalar product is indefinite, one finds three classifications, i.e.,

const. > O; = 0; or < 0. In the former and latter case X can be normalized
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so that the const. = +I, -i.

to the measure s:, dx2 = gLk

For this choice the parameter X is related

dxL dx k, in a simple way:

dE L dx k

gLk ds ds
- +I Timelike geodesic X = s

dx L dx k

gLk dk dk = 0 Lightlike geodesic _ _ s (8.30)

- -i Spacelike geodesic _ = is
dx L dx k

gLk ds ds

n

i =_-I .

It will be noticed that a given geodesic is either timelike, spacelike,

or lightlike; it cannot change from one type to another in a continuous

manner. Through a given point of V4, there are many geodesics (i.e.,

tangent vectors) however, connecting two neighboring (in the sense of

topological closeness) points in a single geodesic as is the case for the

geometry of surfaces imbedded in Euclidean space. A property that these

curves on the surface have is that they represent the curve of shortest

length connecting these points. The geodesics (8.28) also have the property

that the equation describing them can be derived from an action principle.

Consider the integral

82 g 2

I = _.L(x,_)dX = _ gLk

81 81

dxL dx k

dX dX
dX.

If the action I between 81 and 82 is an extremum then

g 2

6 _ LdX = 0

gl
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for variations of the curve x%(X) which vanish at the end points we have

the necessary conditions for I to be an extremum: (Euler-Lagrange

equations)

_L _ d__ _L = 0 > Dt% - 0.

_x _ dk dx _ dk

dk

Therefore, the curves which extremize I are geodesics.

We can now give a geometrical interpretation of the parallel

propagation of a vector A%(or tensor) from a point x% to x_ + dx% used

to define the covariant differential (Eq. 9.11). One constructs the

geodesic from x to x + dx ; then carries the vector along this geodesic,

always keeping the same "angle" between the vector A and the tangent

vector t . This angle is given by

@ = g£k A_ tk"

Taking the absolute derivative of @ yields:

since -_ = 0 and Dt_ - 0 we have
dk dX

De

d--k= 0 by construction and

DA% = 0 ---- dA_ = dllA_.

This construction is shown in (Fig. &.2)
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Fig. 8.2

We shall continue in the next chapter with more tensor analysis and an

introduction to general relativity.
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A. Special Coordinate Systems

In Euclidean geometry one makesextensive use of Cartesian

coordinates. Oblique coordinates could be used in Euclidean geometry

but they would unduly complicate almost all the calculations carried

out. Hence, in Euclidean geometry there exists a set of special coor-

dinates which make the work easier. (Onemight say that Cartesian

coordinates are "closer" to Euclidean geometry.) In a Riemannian space

there also exists special coordinates systems in which someof the

calculations are simplified.

The first set of special coordinates we consider are called

(local) Cartesian coordinates.

At any point P the measure

These arise in the following manner.

ds2 = g_k(P) d# dxk

is a quadratic form with constant coefficients g£k(P).

transformation to new variables dx '_

dx '_ 5x '%=--(p) dxr
5xr

is a real linear transformation°

At P the

From algebra one knows that a

quadratic form can always b_ u_e_v_,=_=_1=-^;by ........._ 1_==_ transformation°

After diagonalization one can rewrite (9.1) in the form:

iwhere the Ei's are either +i or -i. Such coordinates x are called

(9.1)

(9°2)

(9°3)

Cartesian at the given point. The next special coordinates we consider



are called Riemannian coordinates.

such that P(xr -- 0) is the origin.

i00

Let xr be a general coordinate system

Consider the family of geodesics

emanating form P:

d2x_ F_ dxk dxs--+ --0
dX2 ks d% dk "

Let t _ = _ dx_) be the tangent vectors of these geodesics. For
k.dX x_=0

points close to P we can write xr(x) in a Taylor series about X--0.

(9.4)

x (x) --#(0) + + (--r- + ....
kdX 0--f

(9.S)

or using (9.4)

(9.6)

The Riemannian coordinates of points close to P are defined to be

x ,_ = t£k .

Hence, (9.6) represents the coordinate transformation connecting the

general coordinates x% with the Riemannian coordinates x'%:

(9.7)

- ks 0 x x 's + ....

x = g (x')

,£
The inverse transformation x = f%(x) connecting the Riemannian

coordinates and the general coordinates x_, can be obtained by inver-

ting the series (9.8). Carrying out the inversion one finds:

)ks 0 x x + ....

(9.8)

(9.9)
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Fig. 9.1

Riemannian Coordinates

From (9.8) and (9.9) follows

5__xx'# _0 = 6_ (_-sxr r5x r r ' k_-_._ _0 = 6_
(9.10)

These formulae (9.10) imply that the value of any tensor at the origin

P is unchanged by the coordinate transformation (9.8). Also one finds

from (9.8) and (9.9) that

hence from (8.16) follows

5xrBx s

'£> = 0 •
rs 0

Equation (9.11) says that at the origin of a Riemannian coordinate

system the Christoffel symbols vanish. Since

(9.11)

In m

gik,_ = gmk Fig + gim Fkg



it also follows from (9.11) that the first derivative of the metric

tensor vanishes at the origin of a Riemannian coordinate system

Since the point P was a general point of our space it follows that

at any point we can choose coordinates (Riemannian) such that

(g_k,r _0 =0 "

At the origin of Riemannian coordinates eovariant differentiation is

the sameas ordinary differentiation. This can be used to prove

(9.13) because the covariant derivative of g_k vanishes in all coor-

dinate systems.

Combining the two types of coordinates discussed so far

I) Cartesian, 2) Riemannian, we can first transform to a coordinate

system in which the metric tensor is diagonal at the point P (9.3)

then we can transform from that set of coordinates to Riemannian

coordinates at P. Since the value of any tensor is unaltered at the

point P for this last transformation we have at the origin of our

Cartesian-Riemannian coordinate system

k,r 0 k 0 - _k "

Such coordinates are called geodesic at P. Weshall make frequent

use of geodesic coordinates in the future; if we have a tensor equa-

tion that we are trying to verify then if we can verify it in a geo-

desic coordinate system (9.14), then it holds in all coordinate systems.
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(9.12)

(9.13)

(9o14)



B. The Curvature Tensor

The operators for ordinary differentiation _-_- ,
5xr 5xs

commute with one another

5xSsx r 5xrSx s

--0,

however, covariant differentiations of a vector do not cormnute.

One can prove the identity

Aj[ ;k;_] 1/2 A R i= i . jk_(x)

(We shall not write in the position dependence of R i
j_

where

usually)
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(9.15)

R i = Fi i r Fi r i
. jk_ jL,k - Fjk,_ + Tj_ rk - Fjk Fr_ (9.16)

by straight forward differentiation. By using the quotient rule in

(9.15) one can show that R i is a forth rank tensor. R i is
jk_ jk_

called the Riemann curvature tensor. By inspection we see that R i
jk_

is antisymmetric in its last two indices.

R i
•jkg = R.lj[k_] (9.17)

Equation (9.15) can be written

i

A:.,.._j,=,_- A.j_,_._,_.,.= A i`R.jkg
(9.18)

Permuting the indices of equation (9.18) twice and adding yields

R i i i
: Ai< .jk_ + R k_i + R%jk_ " (9.19)

Making use of the two identities



Vi; j - Vj; i = V. - Vl,j j,i

Vij;k + Vki;j + Vjk;i = Vij,k + Vki,j + Vjk,i 1
which hold for any vector Vi(= Ai) and any second rank antisymmetric

tensor Vij (= Ai; j Aj;i) , equation (9.19) becomes

A. _Ri jk_ + R_kgj + Ril . _jk_ = 0
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(9.20)

Since A. is an arbitrary vector by the quotient theorem we have
1

which can be written

i " + R i
R.jk_ + R_k_j _jk-- 0

Ri[ jk_] = 0 .

The identities of the Riemann tensor derived so far hold in a more

general space if we replace r_ L_kr) akr by , general symmetric affine

connection. When we introduce the metric we have one other identity

(9.21)

or

n Rn
gij;k;% - gij;_;k = 0 = gnjR. ik_ + gni jk_

Rijk_ = _ ij]kg " (9,22)

Hence, in a Riemannian space the Riemann tensor is antisymmetric in

its first two indices.

the relation

The equations

Using (9.17), (9.21), and (9°22) one can prove

Rijk_ = R_ij " (9.23)
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Rijk_ = Rij[k_] ; Ri[ jkg] = 0

JRijk_ = _ij]k% Rijk_ = Rk_ij

which are the basic symmetry equations for the Riemann tensor, can be

summarized in equations

(9.24)

Rijk% = _ij][k%]
(9.25a)

Ri[jk_] = 0 (9.25b)

4
A fourth rank tensor has in general n independent components in a n

dimensional space. However, because of (9.25a) the number of indepen-

dent components of the Riemann tensor is reduced to _i/2 n(n-l))2 .

The indices in (9.25b) can be selected in the following ways:

i j k _ Because permutation of the last three symbols does

n (n-l) n (n-2)

not change (9.25b); the total number of restrictions it places on the

LI/2 n(n-l))2 components is 1/6 n(n-l) n(n-2). Therefore we have

_i/2 n(n-l))2 _ 1/6 n2(n-l)(n-2) = 1/12 n2(n2-1)

independent components of the Riemann tensor at every point of our space.

In four dimensions this is twenty. From the Riemann tensor R i
jk_

one can form other quantities by contraction; the once contracted Riemann

tensor Rjk

= R i in
Rjk jki = g Rnjki (9.26)

is called the Ricci tensor. It easily can be seen that Rjk is symmetric.

The twice contracted Riemann tensor is called the scalar curvature



Rij = Ri = R
• ° ° •

jl 1
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(9.27)

We now derive a very important differential identity satisfied by the

The Bianchi identities:Riemann tensor•

Rewriting (9.15)

Aj;k; _ - Aj;%; k = A. R il jk_

and taking the covariant derivative of this with respect to m yields

_ = Ri R i
Aj;k;_;m Aj;£;k;m Ai;m . jk_ + Ai jk_;m (9.28)

One can also show in the same manner as (9•15) was proven that

= R i R i
Aj;m;k;_ - Aj;m;_;k Ai;m . jkZ + Aj;i . mk_

(9.29)

Subtracting (9.28) and (9.29) yields

_ _ R i
Aj;k;£;m Aj;m;k;% + Aj;m;£;k Aj;£;k;m Aj;i . mk_

=A° R i
l jk_;m .

(9.30)

If we permute k_m twice in this expression and add all three equations

we can derive the identity

R i + R i + R i = 0
jk_;m jmk;% j_m;k

(9.31)

which is called the Bianchi identity.

obtain the contracted Bianchi identity:

k R);k

or

Gk = 0
_;k

Contracting on i, m and j,k we

=0

(9.32)

where



i

k R
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(9.33)

is called the Einstein tensor.

A space is called flat if the full Riemannian tensor Rijk£

vanishes, otherwise the space is curved. Minkowski space M 4 is a flat space

as is obvious from the fact that the metric tensor gij is in this case

constant (_ij) and hence

Rijk_ = 0 (M4 is flat)

To be sure one may perform coordinate transformations which will induce

non-constant metric coefficients, g£k from constant metric coefficients

_k :

x '_ = f_ (x)

(9.34)

grs(X, ) = f£ fk,r ,s _k

but since (9.34) is a tensor equation and it holds in one coordinate

system, then it holds in all coordinate systems. Hence, if a space is

flat the full Riemann tensor vanishes. The converse statement is also

true, namely, that if the full Riemann tensor vanishes then the space is

flat and there exists a coordinate system in which the metric coefficients

are constants. (See the book Synge and Schild Tensor Calculus, page 105,

fo_ _ proof of this 1_tter result°)

B. An Introduction to Einstein's Theory of Gravitation; The Principle of

Equivalence.

It is an empirical fact that in a gravitational field all par-

ticles are affected in the same way or, in other words, in a gravitational



108

field all particles started with the same initial conditions have the same

path of motion. (That this is true in Newtonian mechanics is due to the

fact that the gravitational mass of a particle is proportional to its

inertial mass, as we have seen in Chapter I.) Experimentally it is known

to one part in i0 II that all particles accelerate equally in a gravita-

tional field. Thus, as far as the motion of a particle is concerned one

cannot distinguish between a uniform gravitational field and uniform

acceleration. The principle of equivalence goes beyond this by saying

there is no difference between the two, i.e., a uniform gravitational

field is equivalent to uniform acceleration. In nature one does not

find uniform gravitational fields, therefore the principle of equiva-

lence must be interpreted to hold only over a region of space-time which

is small enough so that the gravitational field may be treated as uniform.

Later we shall give arguments which show that one cannot introduce a

theory in M 4 which is in agreement with the principle of equivalence,

since any reasonable gravitational theory must incorporate the principle

of equivalence; this means that one cannot formulate a theory of gravity

in M 4. On the other hand, one kno_that there are gravitational phenome-

na. The way out of this dilemma is to give up M 4 and in its place intro-

duce V 4. That is, we assume that space-time is a Riemannian space V 4 with

metric gZk" The principle of equivalence can now be stated in more pre-

cise form as follows: In any region of a gravitational field (V4) one

can choose coordinates such that this region is equivalent, up to first

For a description of the E_t_6s experiment, see the book Experimental

Relativity, by R. H. Dicke (Gordan Breach, 1965).
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order in the dimensions of the region, to a small region in M4° (Rieman-

nian coordinates in V4. ) This means that in any small space-time region

of a gravitational field one can choose coordinates that remove the first

order effects of the gravitational field; and up to the first order

everything like it would be in an inertial frame (M4). The invariant

forms are

ds2 = _k dx_dxk _ M4 ds2 = g_k dx_dxk : V4 °

Let us examine the content of the principle of equivalence in the

neighborhood of a point P in V 4. Introducing the Riemannian coordinates

about P we can write the metric gP,k in the form of a Taylor series about

P = x o

o

= + I ,s)o. (xr _ r _ sg_k (x) (g_k)o _ (g_k,r x o)(X s x o) + .... (9.35)

where (g_k,r)o = 0 in Riemannian coordinates. Using the principle of

equivalence we see that (g£k)o = _k and that "small region" means

size of region I (xr r I I (9.36)
- x o)(X s - xSo)l << I gzk,r,s,(O) •

Therefore, locally (small region) in any gravitational field (V4) one

can use special relativity (M4) and make only second order errors°

Furthermore at any point in a gravitational field one can reduce the

metric to the form

g_k (p) = _£k (9.37)

Thus, at the origin of geodesic coordinates in V 4 one has the same

metric as in special relativity. Equation (9.37) places a restriction

on the metric of a V4 which describes a gravitational field, that is,



at any point the matrix of the metric must have three negative eigen-

values and one positive eigenvalue. This set of signs --- + is called

the signature of the space. According to Sylvester's law of inertia

the difference between the numberof positive coefficients and the num-

ber of negative coefficients is invariant for real transformations° In

our case this meansthat a metric g_k which doesn't have signature

--- + cannot correspond to a real gravitational field.

Wecan now use the principle of equivalence to derive the

equation of motion of a free particle in V4. Wehave the equation of

a free particle in M4

M4: d-_- = 0

where _ is someparameter along the world line of the particle.

In V4 this equation reads

D_____= d_ + r_ dxr dxS = 0
dX dX rs dh dX

Equation (9.39) is the equation of motion for a particle which is in-

fluenced only by gravity. In Einstein's theory of gravitation (which

is what we are discussing here) the paths of particles which are acted

on by gravity alone are geodesics of the V4 describing the gravitational

magnetic force) (9.39) becomes

D___= f£
d%

where # is the four-force action on the particle. The affect of gravity

acting on a particle is to restrict the particle to movealong a geodesic.

An alternate statement of the principle of equivalence is that locally

ii0

(9.38)

(9.39)
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one can choose a coordinate system such that the first order (g_k,i)

effects of gravity are eliminated (Riemannian coordinates). If one inter-

prets the term

-m F£ dxr dxs
rs dX dX (m = rest mass) (9°40)

as the "gravitational four-force" acting on a particle, then at any

I point we can make = 0 and eliminate the "gravitational force "
Near the earth's surface this frame of reference represents Einstein's

freely falling elevator° It is important to realize that removing the

"gravitational force" on a particle in this manner is possible only

because this "force" is homogeneous in gij,k which vanishes in the

"small region" considered, one does not remove the gravitational field

in this small region because of the higher order terms in (9.35). In a

similar manner one can usually write a theory which is known in M 4 so that

it will be valid in V4, for example: Maxwell's equations of electro-

dynamics, the equations of hydrodynamics, the theory of elasticity, etc.

Some of these generalizations are well-known (Maxwell's equations) and

others are not so well-known (elasticity). One particular example where

a theory is known in M 4 but not in V4 is quantum field theory. We shall

be interested in studying these various theories at a later time; however,

here we would like to carry through an assertion made earlier concerning

the principle of equivalence and field theories in M4° Consider a small

region of space near a static spherically symmetric gravitating body.

The potential at a point r from the center of the body will be

-kM
_(r) = r (9.41)

A. Schild, Proc. of the International School of Physics, "E°

Fermi" Course 20, pp. 69-115, Academic Press, 1963o



in the Newtonian approximation. Consider now the following events; gl:

start with an electron-position pair at @+ A_, g2: the pair is allowed

to fall to a potential _, by the principle equivalence both particles

accelerate downwardand acquire a kinetic energy m A_, g3: the pair is

allowed to annihilate and produce two photons of energy h_ which are

reflected from heavy mirrors to the upper level _ + _ where they have

energy hv, g4: the photons at the upper level are brought back together

so as to form another pair which must be at rest. Using the principle

of equivalence we can write:

2 h_ = 2m+ 2mA_ at

2m= 2h_ at _ + _

(h = Plank's constant)

Solving these equations we obtain

Therefore, light which moves from a lower potential _ to a higher

potential _ + A_ is "redshiftedo" Supposenow that monochromatic light

of frequency _ is sent from _ to _ + _ where it arrives with frequency

_o Since the number of wavelengths sent from _ equals the number received

at @+ A@,we have
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(9.42)

(9.43)

where _ and _ are the times elapsed corresponding to sending and receiving

the n wavelengths respectively° Combining (9.43) and (9.44) we see that

T - T
= _(gravitational time dilation) (9.45)

which shows that the times are not the same. Equation (9.45) must be
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interpreted to mean that "identical clocks" located at different gravi-

tational potentials run at different rates.

Wo_ LIME- "----7

OF cl_or._ AT _ (,___.__

A

_wOgLP LIME OF

B

......,

"E= "_ _,j M4

r

.g

Fig. 9.2 Clocks at rest near a gravitating

spherically symmetric mass.

In Fig. 9.2 is shown an experiment which is carried out in the region

of space containing _ and _ + A_. At A an experiment is started at

the lower level and a signal A _ is sent to the higher level so as to

compare initial clock readings. At B the experiment (say the Beatle

record) is stopped and another signal B B is sent so as to compare the

final clock readings. Since the gravitational field is static (does

not change with time) the lines A _ and B B are parallel and hence

the prediction is that • = _. However, by (9.45) • # _ and therefore,
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the equivalence principle and/or the gravitational redshift cannot be

formulated as a theory in special relativity, i.e. in M4. But, both the

principle of equivalence and the gravitational redshift are experimentally

verified. This clearly separates theories such as electrodynamics and

relativistic quantumtheory which can be formulated in flat space (M4)

from gravitational theories which cannot be so formulated.

The non-relativistic limit of equation (9.39) must be the

Newtonian equation

d2x_
dt 2 = _ _,

where _ is the gravitational potential at the particle. In order to

find the non-relativistic limit of (9.39) we assumethe metric can be

written in the form

(9.46)

g£k = _k + h£k

Where the h£k represent first order corrections to the Minkowski metric

q]£k" Substituting this expression in the geodesic equation

dV_ + Fff vrv s
7 _r = 0

and making a low velocity u << i weak field approximation we have

LLU = - r$+
dt " 44 "

The first order Cristoffel symbol is

= 1/2 _s Q2h4s,4 _ h44, rF44

(9.47)

Since _ = i/c _ and if the
_x 4

(9.39)

time variations in the field are not extremely



large the first term is small with respect to the latter and we have

du_
dt -- - 1/2 h44,_ (quasi-static)

This equation is the sameas the (9.46) if we associate
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(9.48)

h44 = 2_ + const. (9.49)

Thus, Newton's equations follow from the geodesic equations. In

Einstein's gravitational theory the metric g_k is a generalization of the

Newtonian potential.

As previously mentioned in this chapter, if we know a given

theory in M4 we can usually generalize it to V4 without a great deal of

difficulty. There is one theory which we have seen cannot be formulated

in M4, that is a theory of gravitation; in the next chapter we formulate

and begin our investigations of Einstein's theory of gravitation.



Chapter i0

116

A. Einstein's Gravitational Field Equations

In this chapter we shall include the constant c (speed of

light in free space) in all formula. The reason for this will be

explained later.

Wehave seen in the previous chapter that the principle of

equivalence implies the formulation of the theory of gravitation in a

Riemannian space V4. In a Riemannian space the most important object

is the metric tensor g_k" Wehave shownheuristically that the g_k'S are

generalizations of the Newtonian potential. The missing item is the

dynamical equations that will allow us to determine the gravitational

field g_k from a given distribution of "sources." Thus, we need to know

the generalization of Poisson's equation mentioned in Chapter i. The

generalization chosen by Einstein was

- ½ 6k R = Gk = cI Tk , cI = const. (i0.i)

is the Einstein tensor defined by (9.33) and _k is the energy-where Gk

momentumtensor determined by the "sources." Einstein's field equation

(i0.i) thus generalizes Poisson's equation

V2_ = 4_ k0 (1.14)

Equations (i0.i) and (1o14) have somesimilarities. Both equations are

second order partial differential equations for the gravitational field

variables g_k and _ in terms of source distributions _k and p. Of course,

(i0.I) is a set of ten quasilinear partial differential equations while

(1.14) is a simple linear partial differential equation. It follows



immediately from (i0.i) that the tensor _T_k _rTk= g must be symmetricr
%k

since G is symmetric. It also follows from the contracted Bianchi
k

identities (9.32) that the tensor T_ must be covariant!y constant:

Tk;k = 0 .
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(10.2)

By contracting (i0.i) one finds that the field equations can be written

in the equivalent form

R_k : Cl(T£k ½ g_kT). (10.3)

where T =

In regions where there are no sources (_k = 0 <_> "vacuum") the field

equations reduce to

Kk£ = 0. (vacuum field equations) (10.4)

Even if (10.4) is satisfied throughout V4 it does not imply that V4 is

flat. A flat V 4 is characterized by the condition

R% = 0 (i0 5)
krs

which is not necessarily implied by (10.4) (this is clear from the fact

that (10o4) represents ten independent equations while (10.5) represents

twenty). From (i0._) one can see the structure of the left-hand side

of field equations

R£ k = ½ gi_ gim,_,k + g%k,i,m gik,%, m - g_m,i,k ]

im n p n p
+ g gnp[F£_'Fim_ - F_'_i"]__ = Cl (T£k - ½ g_k T)

from which the above-mentioned quasilinear form of the field equations

(10.6)

is obvious.
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From the principle of equivalence one sees that the inter-

pretation of the measure ds is the sameas in special relativity, namely

along the path of a material particle ds = dr where dr is the propertime

increment. This proper time is the time that would be measuredby a clock

which is "carried by the particle." Light pulses are again characterized

by null geodesics, ds = 0 along their trajectory. The proper time,T can

again be used as a parameter to characterize the motion of a particle.

What is the form of the energy momentumtensor _k? It is a

symmetric second rank tensor depending on the distribution and motion of

the sources of the gravitational field. The simplest (or most complica-

ted?) gravitational source one can imagine is a neutral point particle.

Associated with such a particle is its four velocity _ and massm,

=d =dZ dz4
dr dr ' dr

where #(T) is the position of the particle. Since the mass m is

assumed to be concentrated at a point we must have

_k(x) = 0 x_ # Z _

A consistent form for _k is arrived at by using the Dirac delta

6(x-z(_)) (see Appendix A). The energy momentum tensor for a neutral

(spinless) pOiLlt ........ _^ "_ d_=__JCI.L L J-,,.. JL= .LO _ .... as

_k(x ) = m_c_c_ _(_) vk(T) 6(x-z(_)) dr

Since _ and 6(x-z) are both relative tensors of weight plus one it is

clear that _k is an ordinary tensor (weight zero). The energy momentum

tensor can be rearranged into the form

(10.7)

(10.8)

(10.9)



119

+_
mc

_k(x) _ ___(T) dz 4dzk 6(x 4 z4) 6(x-z)__ dz 4

4
and after carrying out the integration over z

= mc _ dzk 6(x-z(_)) (I0.i0)

_k(x) _ dz4 - - 4

'0 z4(T)=x => _=f(x4).

The dirac delta therefore allows us to form a tensor field _k(x) from

quantities which are defined only along the world line of the particle.

Later we shall use this energy momentum tensor to investigate the field

equat ions.

In the last argument of Chapter 9 we showed that Newton's

equation (R46) follows from the geodesic equation (9.39) in a "weak field

quasistatic" approximation. We now wish to perform the same analysis

with the field equations (i0.I) and show that Poisson's equation (1.14)

follows as the first order approximation. The procedure to be followed

here is to use a perturbation technique to solve the equation (I0oi). Both

sides of equation (I0.i) are developed in terms of a parameter and the

equations are solved successively. (Those familiar with perturbation theory

in quantum mechanics will notice the similarity°) We assume the weak field

metric can be written as in (9.47)

g_k = _%k + h_k h£k << i

One may interpret (9.47) to mean that the geometry differs only slightly

from M 4 in the coordinate system chosen. Far away from the matter, i.e.

the particles producing the field, the space must be flat. That is

lira _k(X) = _£k lim _k = 0

r_ r_

(10,11)



2 3
where r = 7.

_=i

h£k = E h£k + E 2 h_k + .... ,

(i) (2)

h_k = E h_k + E 2 h_k + .... ,

(i) (2)

x x . The parameter expansion has the form

g£k = _£k + h%k

g_k = _k _ h£k (10.13)

field is directly related to the speed of the sources (10o14) implies

f

_ This is a so-called "slow" approximation in l
IV I ...... " _ ..... _-_, ...... ,'_--';_o_-';em_ _Th'ic'h a

,'_-'[ _-<- i l conLLct_- Lu ....... VG............... :,_.... re
valid for arbitrary _ "fast" approximations.

where v is a characteristic speed associated with the sources. We have

already determined the first term in h44 in equation (9.49). The addi-

tive constant in h44 must be zero since g44 = +i as r _ =, i.e., condition

(i0oli). Thus putting in the correct factors of c we have

is of one higher order in i/c than f o Since the time variation of the

3f = 1/c ?f (lO. 14)
_x 4 _ t

quantity by one, that is,
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(10.12)

We also assume the field to vary slowly with time or to be quasistatic.

We shall choose the expansion parameter E to be i/c since we are interes-

ted in the Newtonian approximation to the field equations. In these

i 2 3 4
approximations we are considering the coordinates (x ,x ,x ,x = ct)

have the interpretation of space and time in the usual Newtonian sense.

As will be shown later this is a useful assumption, however, one should

be warned that by doing this we are destroying the geometrical descrip-

tion of the gravitational field implied by general relativity. Because

4
E = l/c, differentiation with respect to x increases the order of a



h44 = 2
c
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(9.49)

According to (10.12) this is h44 which implies that h44 = O.

(2) (1)

h44 = 2

(2) c

25 + i/c 3 +
h44 = 2 h44 ....

c (3)

(lO.15)

In order to determine the constant c I appearing in Einstein's field

equation it is sufficient to know only equation (10.15) as we shall show

later.

The expansions of h£k may be further narrowed if we note

that in the limit c - = the general relativistic expressions must go

over into the Newtonian expressions. There are basically two reasons

why this is true i) Newtonian mechanics does not contain the constant

c in any fundamental way 2) Newtonian theory is a theory with infinite

signal velocity. We now show how one may further restrict the expan-

sion of h%k. The Newtonian Lagrangian for a test particle of mass m

in a field _ can be written

1 9

LNewtonia n = 2v - _ (i0.16)

and the Lagrangian for a test particle in general relativity is as we

have seen on page 99.

dx_ dx k (r dt_2 dx_ dxk
LG°R. = g_k dT dr = g_k _d_J _ _ (i0.17)

A test particle is a particle whose own gravitational field is

negligible.
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which can be written

2
LG.R. = ',,d'rY (3_k

dx% dx k

+ h_k) dt dt ( lO. 18)

Expanding (10.18) one obtains in lowest order:

LG.R. = (c2 - v 2 + h44 c2 + h4_ cv_ + h B v_ + ..... (10.19)

In the Newtonian limit c _ m LG.R. must go over into (10.16), therefore

as c - m we must at least have

h44- I/c 2 h4_ _ i/c 2 h _ - i/c

h44 = h44 + ....

(2)

h4_ = h4_ + ....

(2)

h_ : h B + ....
(1)

(10.20)

h !By using the field equations one can restrict the k s even more and

prove the following expansions are generally true:

h44 = h44 + h44 + h44 + ....

(2) (3) (4)

hz_ = h4_ + hz_ + .... (10.21)

(3) (4)

(2) i(3)

(Actually one can even restrict the h_k'S further by more detailed study

of the field equations.) By making use of (10.21) one finds the following

relations connecting the h_k with the h_k. h 44 = h44 , h4_ = - h4_ ,

(2) (2) (2) (2)



h_ h_B h44 h44 (h44)2= , = h44, = _ h44 •

(i) (i) (3) (3) (4) 2 4
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If we use the assumed metric

(9.47), and expand the field equations in powers of l/c, the Riemann

tensor through third order is given by

i

Rigkm = 2(hmi,_,k hmg,i,k + h_k,i,m

(-3)
- hki,_,m) (10.22)

Note that the right hand side has all the symmetries of the Riemann

tensor Rijk_. As one can prove from (10.21), indicies on the small

quantities h.. may be raised and lowered with the Minkowski metric as
13

long as we are considering terms of third order and less. We shall

often make use of this in the following. Contracting the Riemann ten-

sor we obtain the Ricci tensor

i _ h i
R_k = 2(h,k,_ _,i,k

(-_3)

+ _]im _ h i
hk_, i,m k,_,i ) (10.23)

where hi=im h. = h.
zm i_

Define the new auxillary variables Y_k

Y£k = h£k - 1/2 _%k h , (i0.24a)

h_k = Y%k " 1/2 _k Y (i0.24b)

If we expand Y_k in a power series in terms of i/c we can make the

following identifications:

Y44 = h44- i/2(h44-hB)' etc.

(2) (2) (2) (2)

The Ricci tensor may be written in terms of Us

R_k I/2(_ im - 1/2 i= Y_k,i,m _ m_kY,i,m

(43)

(i0.24c)

(10.25)



Contracting the Ricci tensor and writing the Einstein tensor G_k --

R_k - i/2_kR in terms of _(s yields

G_k 1/2 (_im + ir i i= _k,i,m _k _ ,i,_ - _ k,i,_ - _,i,k )"
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(10.26)

In the present coordinate system the h%k (or _(£k) are small corrections

to the _k" But the h_k will remain small if we perform an infinitesimal

coordinate transformation

x '_ = x_ +_(x) _ "small" (10.27)

The transformation coefficients are given by

5x 'Z = 6_ + _ , 5x r = 6r _ _r

_x r r ,r _x,S s ,s

and the transformed metric is to first order in _%,

(lO.28)

,S

!

_ _k
grs = grs - g,gs ,r - grk ,s

(10.29)

(10.30)

If the two coordinate systems are equivalent we must have

= ' = ' , therefore, from (10.30) we findg£k _k + h_k' g_k _k + h_k

= _ _P _P
h_k h£k _]p_ ,k - _pk ,_ (10.31)

's transform
As can be seen by comparing (10.30) and (10.31) the h%k

as tensors under the infinitesimal transformations (10.27). We can

deduce several properties of the transformation (10.27) from (10.31).

Since h' starts with second order terms (10.21) we must have _
=B =

_ + ..... etc. Under this infinitesimal coordinate transformation the

(2)

divergence of the _ 's transforms in the following way:



y,k k
,k = Y£ ,k _ _kr _,k,r
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(10.32)

Since the only requirement on the h_k'S is that they be small we can

see from (10.31) that the h_k'S are not determined uniquely. There are

four arbitrary functions in (10.31), therefore we may impose four con-

ditions on the h_k. There conditions will be called "coordinate con-

ditions" or "gauge" conditions. We choose the following coordinate

conditions for our present analysis

k h_ k h) = 0Y_,k = ( - 1/2 6£ ,k (10.33)

With this choice for the coordinate condition the Einstein tensor becomes

im

GZk = 1/2 _ Y_k,i,m

(_3)

V2 i/c2 %2
GZk = - 1/2 [] YZk, [] = - _im _ib m = _ __

(-_3) _t2

(10.34)

Even after specifying the coordinate conditions (10.33) h_k is still not

unique since one can transform it by any infinitesimal vector _ such

that [_ _ _ = 0. Making use of (10.34) the field equations (i0.i) become

1/2 _'_ Y£k = - Cl T_k y£k = 0,k
(10.35)

_'='= '_k "-_t" .......................... o_ momentum tensor obtained from

the exact equations by our approximations. We shall return to (10.35)

later. The equations (10.31) must be interpreted to mean that if we

have an arbitrary solution hzk for the weak field metric gZk -- _£k + hzk

then all other h£k'S of the form

h_k = h_k - 2 _(Z,k) (10.31a)
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are equally as valid. Thus, to the solution h_k is added a purely

coordinate dependent part. However, if the Riemanntensor Rijk% is

evaluated for the part of the metric _p,_ + _,p one finds it vanishes

identically (i.e. substitute _(p,£) _ hp_ in (10.22).) This means

that the coordinate dependent part does not enter into the gravitation

field equations (the equations are "gauge invariant"). In terms of the

y's the transformation corresponding to (lO.31a) is

Y£k = Y_k - 2 _(£,k) + _%k_p,P

Consider now a general solution, Y_k' to the field equations

(10.31a)

G_k = Cl _£k

(-*3)

with G£k given by (10.26).

(--3)
We now write Y%k as a sum of two parts

Y_k = _k + Y_k (lO.31b)

where y£ = 0 and = + 2 _(£,k) _P
k,_ _k - _k ,p

From (i0.31c) follows

_ _ '_ = _] _kk,_ = Yk,£ = - _k ,_ (i0.31c)

m

Y-%k is a part of the Y%k which does not contribute to the curvature

tensor while Y£k does contribute to the curvature tensor. We can next

make a gauge transformation of the form (lO.31b)

Y%k = Y_k - Y_k (10.31d)

m

which removes from Y£k the part that does not contribute to the curvature

tensor. One may refer to Y_k as the intrinsic part of Y£k and _k as the

coordinate dependent part. The coordinate condition _ = 0 allows one
Yk,_

to consider only the intrinsic part of Ygk "
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In the general case the metric g_k contains two types of

information: I) describes the physical situation 2) describes the

particular coordinate system employed. The coordinate conditions

eliminate the second of these to a large extent.

The constant c I may be determined most easily by using (10.3).

We write out the lowest order terms on both sides for _,k = 4,4. We

have from (10.23) in the quasistatic case

R44 1/2 V 2= _ h44

(2) (2)

to the lowest order term in R44. From (i0.I0) we see that the lowest

order term in T_k is

2
T44 _ mc 6(_-_)

The trace T = _ is also equal to mc 2 6(_-!) to this order. Hence,

(10.3) becomes

(10.36)

(10.37)

1/2 _72 h44 = c I 1/2 mc 2 6E-z),

(2)

or rearranging and making use of (10.15) we have

- V 2 _ : c I 1/2 mc 4 6E-z) (10.38)

To determine c I we need only compare (10.38) with Poisson's equation

for a point particle

V 2 _ = 4_ km 6E-z) (10.39)

Comparing the constants in (10.38-39) we find

-8_k

i 4
C

(lO.4O)



for the value of the constant c I.

written

Thus, the field equations can be

-8_k

G_k = -_- r_k
c

We shall sometimes choose units such that c = i and k = i. (This may

be interpreted as measuring time in seconds and choosing units for

length and mass such that c = i and k = i.)

We can use equation (10.35) to determine the remaining second

order corrections to the metric, that is, h _ (remember that we have

(2)

chosen a coordinate system such that h 4 = 0). To determine h04B we

(2) (2)

need only calculate Y44 from (10.35) and use equation (10.24).

(10o35) in second or_$ becomes
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(10.41)

Equation

1/2 V 2 _ 2_44 = • mc 6 (x-z)

(2) c

-Cl _44

(i0.42a)

1/2 V 2 = 0

(2)

2

1/2 v v_4 = 0
(2)

(I0.42b)

(i0o42C)

The solutions of these equations (which tend to zero at infinity) are

z_ =0 =0
Y44 = 4 ' Y_8 Y_4

(2) c (2) (2)

(10o43)

Using (10.43) and (i0.24b) we find

= 2 80_h_B c
(2)

h4_ = 0 .

(2)

(10.44)



Thus, the metric to second order (in our particular coordinate system)

can be written:
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ds2 = - (I - 2-_2)(dx2+ dy2 + dz2) + (i ÷ 2-_2) c2 dt 2
c c

If one assumes this form for the metric outside a non-rotating spheri-

cally symmetric gravitating body (the sun on the earth) and studies

the consequences, the following predictions can be made: i) gravitational

red shift, 2) deflection of light passing the body 3) geodetic preces-

sion of a gyroscope. Another effect, the advance of the perihelion of

an orbiting body depends upon higher order terms in the metric (namely

h44 in the present coordinate system). Later we shall give a more

(4)

detailed examination of the experimental verification of general

relativity.

It is interesting that h _ correction to the metric is the

magnitude as the h4_2)correction- but does not show up insame order of

(2)
the Newtonian approximation equation (9.48). The reason for this is

2
the presence of the c in the timelike part of the metric (10.45). In

ds 2

the Lagrangian L = c2d%2 the g_ terms are multiplied by v2/c 2 which

is small in the Newtonian approximation.

The solution of the linearized gravitational equations (10.35)

(10.45)

16_k _
_k = + --7 Tk ' _k,_ = 0 (i0.35)

c

is solved in exactly the same way as the analogous equation in electro-

magnetic theory. The general solution to the equation

[_]@ = - ozp (i0.46)
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is

(x) = + C_ 7 Dret(x-x') p(x') d4x ' (10.47)

where Dret(x-x ') is the retarded Green's function and d4x ' = dV' =

(4)

dx 'I dx '2 dx '3 dx '4 The retarded Green's function may be expressed

in the form

i
Dret(x-x') = _ _(t-t') 8((x-x') 2)

where

Ot-t'< O_
0 (t-t') =

it-t'>O j

(10.48)

6((x-x,)2) = 8(_k(X_ - x,_)(xk _ x,k))

Substituting (10.48) into (10.47) and integrating yields the usual

result

@(x,t) = + _ 7

p(x',t' = t-lx-_x'l/c
d3x,

Ix-_ 'l (10.49)

where d3x
' = dS_s ) = dx 'I dx '2 dx '3 Apply (10.49) to (10.35) we have

4k T_(x', t-lx,x' 1/c)

_k(X) = - -_ _ ix_x,l d3x ' (10o50)
c

One can show directly that (10.50) satisfies the coordinate conditions

further since from here on the calculations almost parallel those of

*

electrodynamics. If one calculates the energy radiated by an oscillating

system then the result comes out

Landau, Lifshitz, The Classical Theory of Fields, (Second

Edition p. 366).
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2 3dE km r 6

d--t_ 5 _o
C

(10.51)

when one uses (10.50). Here m is the mass of the system, r is the size

of the system, and w is the angular frequency of the system• For

laboratory size objects the radiation calculated from (10•51) is com-

pletely negligible, i.e. m = 10gms, r = lOcm and m = 106/sec we find

dE 10-30gms
d-_ _ year (10.52)

Thus, the measurement of gravitational radiation will be very difficult•

For binary neutron stars the magnitude of the energy loss is more

favorable although none of these objects have yet been observed.

As a final point, I want to mention what role the linear

theory plays in Einstein's over-all theory of gravitation. Although

the linear theory is non-geometrical and therefore very repugnant to

many relativistics it does allow one to make numerical estimates as to

the order of magnitude of various effects (i.e. such as gravitational

radiation treated above). The full theory does not allow, at present,

such numerical predictions• Thus, as far as the experimentalist is

concerned the linear theory is probably the most important part of

general relativity; however, to the person wishing to understand the

theory in _ 11 Lh_ ....................... _"lull, _zz_L uLi=uLy _= = v=ry inslgni_icant part _._
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A. General Relativity I

In this chapter we shall be interested in studying the exact

equations of Einstein's gravitational theory (which we shall call general

relativity). Let us review briefly the contents of the theory. Wehave

a hyperbolic Riemannian space V4 with signature (--- +) and a metric

tensor g£k = gk_" The g_k'S are related to the "sources" by the partial

differential equations (of the hyperbolic type)

-8_k
G%k(grs) = 4 T_k (_ matter)

c

where T_k (Y matter) represents the stress energy momentum tensor or the

source of the g field. We have given a particular example of T k for

simple "point" particles in the previous chapter. This form is appro-

priate when one discusses the motion of particles, however, other forms

for the stress tensor must be chosen if we want to treat a continuous

system° The interpretation of the stress tensor (10.9) used in the

previous chapter is relatively simple. The path of the particle descri-

bed by (10.9) is some curve in V4. We choose a geodesic coordinate

system attached to the particle. (Such a coordinate system is called a

Fermi coordinate system.) In this coordinate system we have (at the

origin)

g44 = - gll = - g22 = - g33 = 1

4
V =0 , V =C

(10.41)

(llol)

The non-zero component of T%k is:



2
T44 = mc 6_-z)
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(11.2)

T£k = 0 _,k # 4,4 .

Hence, T44 is the energy density associated with the particle. Now for

an arbitrary system T_k , we shall retain the same interpretation of its

stress-energy tensor as we have for point particles.

T44 = energy density > 0 (ll.3a)

we notice from (10.41) that this implies

G44 < 0 . (ll.3b)

The conditions (ll.3b) are conditions which must be satisfied in order

for the energy density to be positive definite. The units of T44 are

(energy% .momentum . _hich we shall call momentumtime " which is the same as Itime.area )

flux) from (i0.i0) we find that for "point" particles

T_4 = m____cV_ 6 (x-z)

and hence T_4 represents the momentum flux in the th direction. For

(11.4)

those acquainted with the electromagnetic field it might be of interest

to quote some of the components of _k:

i 2 , T4_ IT44 = _(E + B 2) = _(E X B) _ , (ll.5)

where E is the electric field and B the magnetic field. The units of

.momentum.
(force) are the same as those of ¢ _i-_e ), therefore, the units of

_k .force.
are also _--_rea). In the case where we are considering a continuous
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system we may interpret the space componentsof T_ as the ordinary stress

tensor:

T_ = force in _ direction per unit of area
having its normal in the _ direction.

The diagonal componentsTII T22, T33, are stress componentswhile the

off diagonal terms T12, T23, T13 are shear type stress components. If

we consider a unit cube in three space the following diagram illustrates

someof the forces exerted on the cube:

(11.6)

T_3

TIJ_

Fig. ii.i A unit volume of continuous material

We now want to consider an exact solution to the field equations (10.41).

First we define what we mean by a stationary space time. Besides coor-

dinate transformations in V4 one can also consider point transformations

in a given coordinate system. Suppose we have a coordinate system S and

we change to a coordinate system S':



CT: S.-* SI x '_ = f£(x)
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(11.7)

5
.P

Fig. 11.2 Coordinate transformation CT.

Associated with every coordinate transformation CT: S_S' there is a

point transformation (PT) PT: S_S such that the transformed point P-P'

in S has the same numerical value as the new coordinates of P in S'

s P

Fig. 11.3 Point transformation PT,

For the coordinate transformation (11.7) the point transformation is:

PT: 'x_ = f£(x) = x '_. (11,8)
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In point transformations the points of space are moved relative to the

coordinate system (this is sometimes called an active coordinate transfor-

mation although this is not very accurate terminology) and under a coor-

dinate transformation (passive) the labels attached to the points are

changed. Let us consider an infinitesimal vector x_ £, x + dx£ in terms

of a picture such as Fig. 11.4.

Fig. 11.4 CT and PT of an infinitesimal vector.

The relations (11.7) and (11.8) connect the coordinates in Fig. 11.4.

point transformation in V4 is called a motion or isometry in V4 if the

measure d'S 2 of the displaced points 'x%, 'x£ + d'x _ is equal to the

measure of the two original points x% x% + dx_.

d'S 2 = g_k('X) d'x _ d,x k

dS 2 = g£k(X) dx_ dx k

A

(ll.9a)

(ll.gb)

Using (11.8) we can write (ll.9a) in the form
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d,S2 ,4= g%k(X') dx dx 'k , (ll.lOa)

and making use of (11.7) we can write (ll.9b) in the form

dS2 = g %k(X dx, ,) dx,% ,k

where g'_k is the transformed metric

g'%k(x,) = fr fs,4 ,k grs(X) .

Therefore, if dS2 = d'S 2 we have from (ll.lOa) and (llolOb)

(ll.10b)

(11.11)

g_k(P) = g'_k(P) , (11.12)

that is, the two metrics must be the same when evaluated at the same

numerical coordinates. Useful statements from (11.12) cannot be obtained

for arbitrary point transformations, however, a kind of point transformation

that yields useful statements from (11.12) is the infinitesimal type.

When we consider infinitesimal point transformations we have

'x% = x '% = x% + _St (11.13)

where 6t is treated as a first order infinitesimal (i.e., all powers of

6t higher than first are neglected) and _ is an arbitrary vector field.

From (ii.ii) follows (see equation (10.30))

, , s _s 6t
g £k (x) = g%k (x) - gs_ (x) _,k 6t - gsk(X) ,4

Expanding g'%k(X') = g'%k(X+_St)

order terms (Iio14) becomes

g'£k (x) = g%k (x) - g%k,s _

(11.14)

about 6t = 0 and retaining only first

s s 8t .
s 6t - gs£ _,k 6t - gsk _,_ (11o15)
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The difference

£_ g£k = g£k (x) - g'£k (x)

which can be written

= (g%k,s _s + gs_ _s s ),k + gsk _,_ 6t (11.16)

£_ g£k = (_;k + _k;_ ) 6t (11.17)

is called the Lie differential of g£k" A necessary condition for _

to be a motion is for

£_ g_k = 0 (ll.18a)

or

_£;k + _k;% = 0 (ll.18b)

The equation (ll.18b) is known as Killing's equation and a vector satis-

fying this equation is known as a Killing vector. Each solution of

(ll.18b) generates a one parameter group (this is a Lie group) of trans-

formations which leave the metric invariant. The maximum number of solu-

tions of (ll.18b) in an n dimensional Riemannian space is n(n+l)/2 which

in the case n = 4 is ten. In a general space-time V4, however, the

number of solutions will be less than ten, say r. Hence, in general, a

space time will admit a r parameter group G which leaves the metric
r

invariant in form, 0 <_ r <__i0. Physically the group G r is the syrmnetry

group of the space. A four dimensional spac_ admits four independent

translations along the four coordinate axis and six independent rotations

in the coordinate planes. In the case of maximum symmetry, r = i0 and one

can show that the V4 is of constant curvature; for vanishing curvature
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this is just M4 and the ten parameter group is the Lorentz group. In the

case r = 0 we have a V4 which has no particular symmetry properties.

Petrov has given an exhaustive classification of manyV4's for various

values of r. From (11.13) we see that the trajectories in V4 of the one

parameter group associated with t are given by integral curves of the

ordinary differential equations:

dx£ _ _%dt (x). (11.19)

Weshall give an example for r = I. A V4 is called stationary if it admits

a one parameter group of motions with a time-like Killing vector. Wecan

always choose a coordinate system in which a time-like vector _ has the

form (this is becauseV4 is of the hyperbolic type):

_ = (0,0,0,1)

In this coordinate system Killing's equation reduces to

g_k,4 = 0 , (iio )

that is, all the metric coefficients are independent of the time like
4

coordinate x in the chosen coordinate system. Furthermore the trajec-

tories of the group are parallel to the Killing vector = 64.

dt£ = 6i or }1 2 3
x ,x ,x = const, x = t

(11.2)

I!

See A. Petrov, Einstein - Raume

(pages 53-62 for an introduction).

Akademie-Verlog, Berlin, 1964
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A static space-time is a special case of a stationary space-time where

the time-like Killing vectors are orthogonal to the family of surfaces
4

x = const° This means

k 0 , d# = (dx_,0)g%kd# 64=

which yields

g_4 = 0 (11o22)

A static V4 is called "spherically synmmtric" if in the coordinate system

g_k,4 = 0 g_4 = 0 (11.23)

4
the surfaces x = const, have "spherical symmetry." By "spherical sym-

metry" we mean that all directions (from the origin of the coordinate
4system) in the surface x = const, are equivalent. If d_2 denotes the

metric of this surface we have

d_2 = _ g_8 dx_ dxB

where x_ are the coordinates on the surface.

cartesian" coordinate system on the surface.
4

three orthogonal space axis in the surface x

(11.24)

Wechoose x_ as "orthogonal

Under a rotation of the

= const, we have

xB _) -i Tx '_ = _ matrix (a = a, a = a , (11.25)

where a_ is a three dinmnsion rotation matrix. If the metric (11o24) is

invariant under rotations it must have the form

d_ 2 _(dxl)2 2= _ f(rl) + (dx 2) + (dx 3)

2 1 2 (x2)2 2
r I = (x) + + (x3)



where f is an arbitrary function.

coordinates (r,e,¢) we have

I
x = rlsinO cos_
2

x = r is ine sin¢
3

x = r I cos_ .

Substitution of (11.26) into (11.25) yields

Introducing the "usual" spherical
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(11.26)

¢b2 = - f(rl) dr21- f(rl) r21 (d_2 + sinO d_2). (11.27)

Using (11.27) the general form for the static, spherically symmetric line

element can be written

4 2 (dr21 r21(d_2+ sin2_ d_2)) (11.28)as2 = g(rl)(dx ) - f(rl) +

where g and f are arbitrary functions. The coordinates (r,e,¢) are called

isotropic spherical coordinates. The line element (11.28) can still be

subjected to the transformations

r = h(rl)

x'4 = _ (x4)

(11.29)

and still retain the properties of being I) static 2) spherically symmetric.

Under the coordinate transformation

r = _/_(rl) tI

the metric (11.28) transforms into

2

ds 2 = eB(r)(dx 4) _ r2(d02 + sin2@ d_ 2) - e_(r) dr 2 , (11.30)
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where

eB(r) = gI_l=rl (r)

e°t(r) = f

rl=ml(r)

(11.31)

The form (11.30) is called the standard form of the line element. We

shall now solve Einstein's equations for a static, spherically symmetric

source centered at the origin of the coordinate system. The source is

supposed to represent a model for a "star."

Fig. !!.! A model "star".

(The final form tor the metric (11.31) can also be derived using group

theory or by geometrical construction. ) Wenowwrite the Einstein

A. Petrov, Einsteln-Raume, pages 331-335.

J. Synge, Relativity: General Theory, pages 266-267.



equations (10o41) for this metric. The metric coefficients are
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2 2sin2e eB
gll = - e ' g22 = -r ' g33 = - r ' g44 =

ii -_ 22 -2 33 -2 in-2@ 44 -Bg =-e , g =-r , g =-r s , g =e

(11.32)

In order to find the non-zero Christoffel symbols we makeuse of the

variational principle equations for geodesics given on page 99. The

Lagrangian is

L = -e_ (_s) - r ) + sin2@ ( ) + eB (_-s) o

The Lagrange equation for the r coordinate is

(11o33)

d 5L 5L = 0 _ = d_Er
ds _r _r ds (11o34)

which becomes

__ _' dr 2 -_ d@2 _ 2 ,.dx 4 2d2r + _- (_s) - re (_s) re-_sin2@ ( ) + 1/2 e_-_ _ (_-s)
ds2

where _' = d-_d_' 8' = drd-_ From this we can pick off the non-zero

i namelyChristoffel symbols of the form F_k,

i _' i -_ i i = 1/2 eB-_ 'FII = _-- , F22 = - re , F33 - re-_sin2@, F44

= 0

(11.35)

(ii.36a)

"LL= remaining UL,L_L--"-_--==^__L_=_s)_nbo!s _._°" 1-,,_determ..._.......... in a _mi]ar manner. _

2 i/r 2
FI2 = , T33 = - sin@ cos@

3 i/r 3 cot9
FI3 = , F33 =

4
F14 = B '/2 . j

(ii.36b)



A further calculation yields the non-vanishing componentsof (10.41)

G_ = e-_(rB' + i/r 2) _ i/r 2 = _ CITII

3 2 1/2 e-_ ii B'-_'G3 = G2 = (_ + _12/2 +-- r
_'_'_ 2
2 " = - CIT2

4
G 4 = e-_(i/r 2 - _'/r) i/r 2 = _ CIT _
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(11.37)

In the region external to the "star" we have

_k = 0 (exterior solution)

and the equations become:

e-°1(r_ +_)- _ = 0
r r

1/2 e-_(B II + _ + _'-_' _'_'r 2 = 0

-= 12 a') 1e (-- r 2 =0
r r

(ii.38a)

(ii.38b)

(iio38C)

Adding the first and second equations yields

_'+_' =0

therefore

+ _ = const. (11.39)

By imposing the physical boundary condition

iim V4 = M4

The constant in equation (11.39) is easily seen to be zero.

2
(ii.38c) by r we can write

Multiply



d -_ -_
r_r e +e - l= 0

145

which can be integrated to yield

-_ cons t.
e = i + (11o40)

r

The constant is easily evaluated by requiring that far away from the body

the field must reduce to the weak field form (10.45):

g44--> i + 2__2
c

r-=

where _ is the Newtonian potential -k__m
r Hence, the exterior solution for

the spherical symmetric "star" is:

2km
-_ e_ = i --e = 2 (11o41)c r

and the measure is:

2km_ dr2 (iio 42)ds 2 = (I --_-)(dx4) 2 - r2(d_2+sin20d_2) 2km.

c r (i - --_-)
c r

Equation (11o42) is called the Schwartzschild solution and is one of the

most useful exact solutions to the vacuum field equations. Although we

have assumed the metric to be I) static and 2) spherically symmetric it

can be shown that any spherically _yn,.etric vacuum solution of the field

equations is static° The proof of this result is Birkhoff's theorem.

This means that even if the "star" pulsates in the radial direction the

exterior solution (11o42) remains valid.
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APPENDIXA

In this appendix we shall consider more results from the tensor

calculus.

i) Relative tensors: A relative tensor of weight N is a quantity which

has the following transformation law under coordinate transformations:

_,_....:l___xlN _x'_ _xs .. _r....
k .... _x _x r _x ,k s ....

(A. I)

Where 'I_x I is the determinent of the matrix f_"% _(v_____) or the Jacobian J

_x' _rJox,

of the transformation:

J = det i=_-Z) •

_ J_-_ox w

(A.2)

If N = 0 then T is called an absolute tensor or just a tensor. If N = 1

then T is called a tensor density° Since

5x r 5x s

g'£k _x,£ _x,k grs

we have

g, = j2 g (A.3)

or

_= J_ , (A.4)

_a__ _ _ arelatives_a_oro_we_g_+_ _ _iiii_ __en_or
one can form a tensor density of plus one by writing

(A°5)

(We shall underline tensor densities of weight +i sometimes.)

Under Coordinate transformations



T,%.... 5x '_ 5xs r
-k = J-- • ....... T ....

.... _xr _x,k -- s....
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(A.6)

Sometimesone finds quantities which transform with an odd power of J

called pseudo (or axial) quantities. In these cases one is usually

dealing with transformations for which J = +i and one must keep track

of sign (J) under reflections. However, here such terminology would

be redundant since we are treating tensor densities separately from

the outset°

A less obvious tensor density is the permutation symbol

+i, i,j,k,_ = even permutation of 1,2,3,4
gijkg _ gijk_ = -I i,j,k,_ = odd " " "

0 elsewhere
(* => samevalue)

(A.7)

Any object with the symmetry of the permutation tensor is completely

determined by only one of its non-zero components. That is if we know

g1234 we can generate all other componentsby merely switching indices

on g1234" Formthe quantity

_# _xTM _ _x p

f ' = -- g_rrmp
rstu _x,r _x,S _x,t _x,U

(A.8)

By switching indices on f' one can show that it has the same
rstu

symmetry as grstu' and therefore is determined from only one component,

say, f'
1234'

5x _ 5x TM 5x n 5x p

f1234 _x,1 _x,2 _x,3 _x,4 g£mnp

i
Now if one has a matrix a. then the permutation tensor is related to

3
i

the determinent of a. in the following way
J

(A.9)



det _ i_ = 8 a_ J a3 _ = 8ijk_ 1 2 a3 4aj ij1_ a2 a4 ai aj a%

1/4' 8ijk_ r s t u
= grstu a. a. ak a£i j
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(A°I0)

Returning to (A.9) we see that

Define

, = Jf1234 " (A. II)

f, = J 8'
rstu rstu

where 8'rstu

have

is the permutation tensor in the primed _ame. Wethen

-i _# _xm _xn _xp
8' = J ,s ,t ,u g_mnp

rstu _x 'r _x _x _x
(A°I2)

and hence the permutation tensor is a relative tensor of weight minus

one. In a like manner one can show that 8,rstu .is a relative tensor of

weight plus one.

2) Covariant differentiation of relative tensorso

Let A be a scalar density of weight N

AV = jN A.

Taking the derivative of A' yields

dA' = jN _x_ _dA__ + A. NjN-I _J
dx' i _x' i dx _x'i

(A°13)

Wehave the following expression for J

• °

l
J = det _--_--,_ = _.

_x l

where C(i,%) is the cofactor of ,----_ Thus
_x

C(i,%) (A.14)
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or

J _2xm

5 _ x_ 3 5x'_ x'n

_X W_"

2xm
_J = C(m,n_ j

5x ,i J 5X,%X ,n

(A.15)

(A. 16)

_X r
The inverse of--

_X ts

_x ,_

_x k may be written

5x '_
is --

5xk
and from matrix theory one know that

5x'm = C(n,m)

5x n J
(A.17)

Finally,

(A.I8)

and

dA___J_'= jN_x _ dA

dx ,i 5x ,i dx_

+ A • N_ 5x'n 52xm

5x TM 5x' %x'n
(A.19)

Multiplying

F'n = 5x _ Fn 5x 'n 2 m

in _x,i _n + -- _ x_x m _x '%x ,n
(A.20)

which can be derived from (8.16), by NA' and subtracting the resultant

from (A.19) one obtains

NA,F,n) = jN _3x% "dA Fn )
in Bx 'i Q7 - NA _n

(A.21)

Therefore the covariant derivative of a relative scalar of weight N is

A = dA _ NA F n

;i dx i in
(A.22)

Similarly for a relative tensor of weight N, _k .... the covariant

derivative is



dx_
+F _ P.... +

pi Tk

.... - Ni .... F ssi
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(A.23)

Using this result we can show that

= 5_qg -jqgFn = 0
_;r _x r rn

(A. 24)

since

F
_x r £r

and hence_ is covariantly constant, a result which seems reasonable

since_ only depends on gij which is covariantly constant. Because

of (A.24) when covariantly differentiating a tensor density we can

commute the_ with the differentiation

(_f_ Tk]''_;r =_ Tk .... ;r (A.25)

3) Green's Theorem

The extension of a 4-cell spanned by the independent infini-

Z d(3)x£ ,tesimal vectors d(1)x , d(2)x , d(4)x is given by

1 i

d(1)x d(4)x

4 4

d(1)x d(4)x

(A.26)

which can be written in terms of the permutation symbol

dV(4) = g£krs d(1)x£ d(2)xk d(3)xr d(4)xS (A.27)

The orientation of the 4-cell is chosen so that d(4)V > 0. The exten-

sion of a 3-cell span by the three independent infinitesimal vectors



_ d(3)x_d(1)x , d(2)x , and is

dS(3)s = gs%kr d(1)x_ xk rd(2) d(3)x

Green's theorem states
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(A.28)

_T
V ,r dV(4) = _ T dS(3)r

Sv (A.29)

where V is a region in four space, Sv its surface and the orientation of

dS(3)r is chosen so that

_r
dS (3)r > 0

for any vector lr pointing out of V as shown in Fig. A.I.

_v

Fig. A. 1



It will be noticed that Green's theorem (A.29) is independent of any

metric considerations; it is merely the statement that one can "inte-

grate by parts." From (A.12) one sees that the permutation symbol is

a relative tensor of weight minus one, and therefore dV(4) _dS(3)_

is a relative scalar (vector) of weight minus one. If one has a

tensor of weight plus on Tk.... , then the productsrelative

Tk.... k....
dS(B)r ' T_ .... dV(4 )
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(A.30)

are absolute tensors. In particular since

_6 (x-y) dV(4 ) = i (A.31)

it follows that 6(x-y) is relative tensor of plus one or a scalar

density. Here 6(x-y) is the four dimensional Dirac delta.

3
6(x-y) = 6(x I - yl) 6(x 2 - y2) 6(x 3 _ Y ) 6(x 4 y4)

If we pick the infinitesimal vectors which span the 4-cell to lie along

the parametric coordinate lines then dV(4 ) = dxldx2dx3dx 4 and we can

define the three dimensional Dirac delta as

6(x-y) = _ 6(x-y) dx 4
--CO

(A.32)

6(_-_) dxldx2dx 3 = i

and therefore 6(_-_) dxldx2dx 3 may be treated as an invariant. As an

example we give the tensor formulas for curvilinear coordinates in

Euclidean three dimensional space. In rectangular coordinates



ds2 = dx2 + dy2 + dz2
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g_k = 6_k = (1,1,1)

therefore, a vector A can be written

A_ = (Ax,Ay,Az) = A£ = (AX,AY,A z)

If we introduce orthogonal curvilinear coordinates x = #(x), then

g_k = (_i' g22' g33 ) '

#k = (g_!_,ll_ i )g22' g33

A_ = (AI,A2,A 3)

and

A = (AI,A2,A3)

A_ = g£k Ak

Using this last relation we find

= A 1
AI gll , etc. and-

The square of A is an invariant

A I

=_g_ll A1

A 2 =--

A 2 = A_# = AI AI + A2A2 + A3A3

A I A 2 A3

A +

The "physical components" of the vector are defined as

A(1) = --
A I

= _ A 1 , etc.



If A is represented in the form
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£where u
m

A = A(_) u__ ,

are unit vectors along the coordinate lines then

A 2 = A A = A(%) A(_) (sum over %)
m

the usual expression. In terms of the "physical components" the diver-

gence can be written

div A = #;% = #,_ + F_r_ Ar

or

div A = --

J_ _x_

after using

k

_-g = _/_ r_k
_x _

which has been derived before. In terms of physical components

div A = 1 5 __ A(_)) , (sum _)

which can be checked by writing it out in spherical coordinates.

is the gradient of a scalar _ then

If #

and

Laplacian _ = Lap _ -

or

Lap _ = q2_ _ 5# 5x

which can be easily checked.

(sum _)
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